方法理论

超低渗油藏水平井注CO2多周期吞吐原油性质变化规律研究

  • 廖松林 ,
  • 夏阳 ,
  • 崔轶男 ,
  • 刘方志 ,
  • 曹胜江 ,
  • 汤勇
展开
  • 1.中国石化华东石油局,江苏 泰州 225300
    2.中国石油长庆油田公司第五采气厂,陕西 西安 710000
    3.西南石油大学油气藏地质及开发国家重点实验室,四川 成都 610500
廖松林(1994—),男,硕士,助理工程师,从事油气田开发及CO2驱油一体化技术研究。地址:江苏省泰州市海陵区南通路99号,邮政编码:225300。E-mail: 1154364969@qq.com

收稿日期: 2021-06-21

  网络出版日期: 2022-09-27

基金资助

国家自然科学基金项目“超低渗透油藏CO2强化采油过程中多孔介质相态及微观渗流机理研究”(51974268)

Variation of crude oil properties with multi-cycle CO2 huff-n-puff of horizontal wells in ultra-low permeability reservoir

  • Songlin LIAO ,
  • Yang XIA ,
  • Yinan CUI ,
  • Fangzhi LIU ,
  • Shengjiang CAO ,
  • Yong TANG
Expand
  • 1. Sinopec East China Oil and Gas Company, Taizhou, Jiangsu 225300, China
    2. The 5th Oil Production Plant of PetroChina Changqing Oilfield Company, Xi'an, Shaanxi 710000, China
    3. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China

Received date: 2021-06-21

  Online published: 2022-09-27

摘要

水平井压裂后注CO2吞吐技术能有效改善原油性质,提高超低渗油藏采收率。结合典型超低渗透储层油藏H区地质及流体特征,采用室内实验和数值模拟相结合的手段,开展超低渗油藏水平井注CO2多周期吞吐机理及原油性质变化规律的研究。结果表明:注入CO2使得原油饱和压力升高、体积膨胀、黏度降低、体系变轻质;注CO2吞吐不同阶段的主要作用机理不同,注入阶段补充地层能量、溶于原油、降低原油黏度,焖井及开井生产初期降低原油黏度,扩大CO2波及范围,开井生产中后期萃取轻质烃和少量中间组分烃;采用定时定点的方式,分析油藏中不同距离的油相中CO2含量,推测出H区块注入CO2沿裂缝的横向波及半径介于24~40 m,随着吞吐周期的增多,油相中CO2摩尔含量的增幅由第一周期的增加451倍,降到第三吞吐周期的0.44倍,注入的CO2溶于原油的量相对减小,对原油性质的影响逐渐减小。该研究对CO2吞吐机理的认识提供了新的分析方式,为进一步推广超低渗油藏水平井CO2多周期吞吐技术提供一定的理论支撑。

本文引用格式

廖松林 , 夏阳 , 崔轶男 , 刘方志 , 曹胜江 , 汤勇 . 超低渗油藏水平井注CO2多周期吞吐原油性质变化规律研究[J]. 油气藏评价与开发, 2022 , 12(5) : 784 -793 . DOI: 10.13809/j.cnki.cn32-1825/te.2022.05.010

Abstract

CO2 huff-n-puff after fracturing of horizontal wells can effectively improve the properties of crude oil and increase the oil recovery of ultra-low permeability reservoirs. Combined with the geology and fluid characteristics of a typical ultra-low permeability reservoir, Block H, the mechanism of multi-cycle CO2 injection in horizontal wells and the variation of crude oil properties in ultra-low permeability reservoirs are studied by means of laboratory experiment and numerical simulation. The results show that after CO2 injection, the saturated pressure of crude oil increases, the volume expands, the viscosity decreases, and the system becomes lighter. And the main action mechanism of different stages of CO2 huff-n-puff are different: in the injection stage, the main mechanism is to supplement the formation energy, dissolve in crude oil, and reduce the crude oil viscosity; in the soaking and the initial stage of production, the main mechanism is to reduce the crude oil viscosity and expand the scope of CO2; in the middle and late period of well opening production, the light hydrocarbons and a small amount of intermediate component hydrocarbons in the oil phase are extracted. The CO2 content in oil phases at different distances in the reservoir is analyzed by the method of fixed time and fixed point, and it is deduced that the lateral sweep radius of CO2 injection along the fracture in H block is 24~40 m. With the increase of the huff-n-puff cycle, the increase of molar content of CO2 in the oil phase decreased from 451 times in the first cycle to 0.44 times in the third cycle. The dissolved amount of injected CO2 in crude oil decreases relatively, and the effect on the properties of crude oil also gradually decreases. The above research provides a new analysis method for understanding the mechanism of CO2 huff-n-puff, and provides some theoretical support for further popularizing the multi-cycle CO2 huff-n-puff technology of horizontal wells in ultra-low permeability reservoirs.

参考文献

[1] 胡文瑞, 魏漪, 鲍敬伟. 中国低渗透油气藏开发理论与技术进展[J]. 石油勘探与开发, 2018, 45(4):646-656.
[1] HU Wenrui, WEl Yi, BAO Jingwei. Development of the theory and technology for low permeability reservoirs in China[J]. Petroleum Exploration and Development, 2018, 45(4): 646-656.
[2] 胡永乐, 郝明强, 陈国利, 等. 中国CO2驱油与埋存技术及实践[J]. 石油勘探与开发, 2019, 46(4):1-12.
[2] HU Yongle, HAO Mingqiang, CHEN Guoli, et al. Technologies and practice of CO2 flooding and sequestaion in China[J]. Petroleum Exploration and Development, 2019, 46(4): 1-12.
[3] 田巍. 老油田注CO2开发提高注气能力的方法[J]. 石油与天然气化工, 2020, 49(3):72-77.
[3] TIAN Wei. A method of improving gas injection capacity by CO2 injection for old oilfield[J]. Chemical Engineering of Oil & Gas, 2020, 49(3): 72-77.
[4] MERCHANT D. Enhanced oil recovery-the history of CO2 conventional wag injection techniques developed from lab in the 1950’s to 2017[C]// Paper CMTC-502866-MS presented at the Carbon Management Technology Conference, 17-20 July 2017, Houston, Texas, USA.
[5] ZHOU X, YUAN Q W, ZHANG Y Z. Performance evaluation of CO2 flooding process in tight oil reservoir via experimental and numerical simulation studies[J]. Fuel, 2019, 236(15): 730-746.
[6] 田巍. CO2驱提高采收率方法在深层低渗透油藏的应用[J]. 石油地质与工程, 2020, 34(4):50-54.
[6] TIAN Wei. Application of CO2-EOR in the deep low permeability reservoir[J]. Petroleum Geology & Engineering, 2020, 34(4): 50-54.
[7] 吴捷. 低渗稠油化学剂辅助二氧化碳吞吐技术研究与应用[J]. 石油地质与工程, 2021, 35(3):59-62.
[7] WU Jie. Research and application of chemical agent assisted CO2 huff and puff technology for heavy oil reservoir with low permeability[J]. Petroleum Geology & Engineering, 2021, 35(3): 59-62.
[8] 何应付, 赵淑霞, 伦增珉, 等. 液态CO2流变特性与滤失性能分析[J]. 钻采工艺, 2020, 43(3):38-41.
[8] HE Yingfu, ZHAO Shuxia, LUN Zengmin, et al. Analysis of rheological and filtration properties of supercritical CO2[J]. Drilling & Production Technology, 2020, 43(3): 38-41.
[9] 狄伟. 注CO2对超低渗储层的渗透性伤害研究[J]. 钻采工艺, 2020, 43(2):53-56.
[9] DI Wei. Study on the damage of CO2 injection to permeability of ultra-low permeability reservoirs[J]. Drilling & Production Technology, 2020, 43(2): 53-56.
[10] 孙丽丽, 李治平, 窦宏恩, 等. 超低渗油藏CO2吞吐室内评价及参数优化[J]. 油田化学, 2018, 35(2):82-86.
[10] SUN Lili, LI Zhiping, DOU Hong'en, et al. Laboratory evaluation and parameter optimization of CO2 huff-n-puff in ultra-low permeability reservoirs[J]. Oilfield Chemistry, 2018, 35(2): 82-86.
[11] 钱坤, 杨胜来, 马轩, 等. 超低渗透油藏CO2吞吐利用率实验研究[J]. 石油钻探技术, 2018, 46(6):77-81.
[11] QIAN Kun, YANG Shenglai, MA Xuan, et al. CO2 utilization ratio simulation during a CO2 huff-and-puff process in ultra-low permeability oil reservoirs[J]. Petroleum Drilling Techniques, 2018, 46(6): 77-81.
[12] 邹建栋, 廖新维, 张可, 等. 不同油藏压力下CO2驱最小混相压力实验研究[J]. 油气地质与采收率, 2020, 27(1):36-44.
[12] ZOU Jiandong, LIAO Xinwei, ZHANG Ke, et al. Study on minimum miscibility pressure of CO2 flooding at different reservoir pressures[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(1): 36-44.
[13] 史英, 盖长城, 颜菲, 等. 稠油油藏CO2吞吐合理吞吐轮次[J]. 大庆石油地质与开发, 2017, 36(1):129-133.
[13] SHI Ying, GAI Changcheng, YAN Fei, et al. The reasonable CO2 huff-n-puff rounds of heavy oil reservoirs[J]. Petroleum Geology & Oilfield Development in Daqing, 2017, 36(1): 129-133.
[14] 张智, 宋闯, 窦雪锋, 等. CO2吞吐井套管腐蚀规律及极限吞吐轮次研究[J]. 西南石油大学学报(自然科学版), 2019, 41(4):135-143.
[14] ZHANG Zhi, SONG Chuang, DOU Xuefeng, et al. Study of the patterns of well casing corrosion by the CO2 huff-and-puff process and the maximum number of huff-and-puff cycles[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2019, 41(4): 135-143.
[15] 刘刚. 致密油体积压裂水平井CO2吞吐注采参数优化[J]. 石油地质与工程, 2020, 34(2):90-93.
[15] LIU Gang. Optimization of injection and production parameters of CO2 huff and puff by horizontal wells with volume fracturing in tight oil[J]. Petroleum Geology & Engineering, 2020, 34(2): 90-93.
[16] 董炳阳. 低渗挥发性油藏CO2驱注入时机室内实验研究[J]. 石油地质与工程, 2020, 34(3):81-84.
[16] DONG Bingyang. Laboratory test on the timing of CO2 flooding in low permeability volatile reservoirs[J]. Petroleum Geology & Engineering, 2020, 34(3): 81-84.
[17] SONG Z J, LI Y Z, SONG Y L, et al. A critical review of CO2 enhanced oil recovery in tight oil reservoirs of North America and China[C]// Paper SPE-196548-MS presented at the SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition, Bali, Indonesia, October 2019.
[18] TANG Y, SU Z Y, HE J B, et al. Numerical simulation and optimization of enhanced oil recovery by the in situ generated CO2 huff-n-puff process with compound surfactant[J]. Journal of Chemistry, 2016: 1-13.
[19] 高军, 闫治东, 魏本兴, 等. 青西油田多元复合吞吐研究与应用——以柳5X井为例[J]. 钻采工艺, 2020, 43(4):43-46.
[19] GAO Jun, YAN Zhidong, WEI Benxing, et al. Research and Application of Multiple Composite Steam Stimulation in Qingxi Oilfield-Taking Well Liu 5X as an Example[J]. Drilling & Production Technology, 2020, 43(4): 43-46.
[20] 何应付, 赵淑霞, 刘学伟. 致密油藏多级压裂水平井CO2吞吐机理[J]. 断块油气田, 2018, 25(6):752-756.
[20] HE Yingfu, ZHAO Shuxia, LIU Xuewei. Mechanism of CO2 huff & puff of multi-stage fractured horizontal well in tight oil reservoir[J]. Fault-Block Oil & Gas Field, 2018, 25(6): 752-756.
[21] 段炼, 马妮莎, 李鼎一. 致密油藏多级压裂水平井CO2吞吐开发方式研究[J]. 能源与环保, 2018, 40(3):77-80.
[21] DUAN Lian, MA Nisha, LI Dingyi. Study on development methods of CO2 huff and puff for multi-stage fracture horizontal well in tight oil reservoirs[J]. China Energy and Environmental Protection, 2018, 40(3): 77-80.
[22] 张娟, 周立发, 张晓辉, 等. 浅薄层稠油油藏水平井CO2吞吐效果[J]. 新疆石油地质, 2018, 39(4):485-491.
[22] ZHANG Juan, ZHOU Lifa, ZHANG Xiaohui, et al. Effects of CO2 huff and puff in horizontal wells in shallow-burial thin heavy oil reservoirs[J]. Xinjiang Petroleum Geology, 2018, 39(4): 485-491.
[23] 侯广. 致密油体积压裂水平井CO2吞吐实践与认识[J]. 大庆石油地质与开发, 2018, 37(3):166-170.
[23] HOU Guang. Practice and understanding of the CO2 huff-puff for the volume fractured horizontal well in tight oil reservoirs[J]. Petroleum Geology and Oilfield Development in Daqing, 2018, 37(3): 166-170.
[24] 樊建明, 屈雪峰, 王冲, 等. 超低渗透油藏水平井注采井网设计优化研究[J]. 西南石油大学学报:自然科学版, 2018, 40(2):115-128.
[24] FAN Jianming, QU Xuefeng, WANG Chong, et al. Optimization study of the horizontal well and injection-production pattern in an ultra-low-permeability reservoir[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2018, 40(2): 115-128.
[25] DING M, WANG Y, WANG Y, et al. Experimental investigation of bypassed-oil recovery via CO2 soaking and huff and puff injection: Effects of miscibility and bypassed-oil size[J]. Fuel, 2019, 248(15): 152-160.
[26] 刘建仪, 李牧, 刘洋, 等. 注CO2吞吐微观机理可视化实验[J]. 断块油气田, 2017, 24(2):230-232.
[26] LIU Jianyi, LI Mu, LIU Yang, et al. Visualization experiment on micro mechanism of CO2 huff and puff[J]. Fault-Block Oil & Gas Field, 2017, 24(2): 230-232.
[27] 陈举民, 李进, 曹红燕, 等. 浅薄稠油油藏水平井CO2吞吐机理及影响因素[J]. 断块油气田, 2018, 25(4):515-520.
[27] CHEN Jumin, LI Jin, CAO Hongyan, et al. Mechanism and influence factors for CO2 huff and puff of horizontal flooding in shallow and thin heavy oil reservoir[J]. Fault-Block Oil & Gas Field, 2018, 25(4): 515-520.
[28] SUN R, YU W, XU F, et al. Compositional simulation of CO2 huff-n-puff process in Middle Bakken tight oil reservoirs with hydraulic fractures[J]. Fuel, 2019, 236(15): 1446-1457.
[29] 陈祖华, 吴公益, 钱卫明, 等. 苏北盆地复杂小断块油藏注CO2提高采收率技术及应用[J]. 油气地质与采收率, 2020, 27(1):152-162.
[29] CHEN Zuhua, WU Gongyi, QIAN Weiming, et al. EOR technology and application of CO2 injection for small complex fault block reservoirs in Subei Basin[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(1): 152-162
[30] 陈龙龙, 白远, 云彦舒, 等. 气体示踪在非均质特低渗透油藏二氧化碳驱气窜监测中的应用[J]. 钻采工艺, 2020, 43(3):56-59.
[30] CHEN Longlong, BAI Yuan, YUN Yanshu, et al. Application of CO2 channeling monitoring for using gas tracer in ultra-low-permeability reservoirs CO2 flooding[J]. Drilling & Production Technology, 2020, 43(3): 56-59.
[31] 师瑞东. JN低渗小断块油藏CO2/CH4吞吐提高采收率机理研究[D]. 成都: 西南石油大学, 2018.
[31] SHI Ruidong. Study on the Mechanism of CO2/CH4 huff and puff enhanced oil recovery in JN low permeability small fault block reservoir[D]. Chengdu: Southwest Petroleum University, 2018.
[32] HAO M Q, LIAO S L, YU G M, et al. Performance optimization of CO2 huff-n-puff for multifractured horizontal wells in tight oil reservoirs[J]. Geofluids, 2020(3):1-13.
[33] 孙焕泉, 王海涛, 吴光焕, 等. 稠油油藏注CO2提高采收率影响因素研究[J]. 石油实验地质, 2020, 42(6):1009-1013.
[33] SUN Huanquan, WANG Haitao, WU Guanghuan, et al. CO2 EOR factors in heavy oil reservoirs[J]. Petroleum Geology & Experiment, 2020, 42(6): 1009-1013.
[34] 杨胜来, 王亮, 何建军, 等. CO2吞吐增油机理及矿场应用效果[J]. 西安石油大学学报(自然科学版), 2004, 19(6):23-26.
[34] YANG Shenglai, WANG Liang, HE Jianjun, et al. Oil production enhancing mechanism and field applying result of carbon dioxide huff-puff[J]. Journal of Xi’an Shiyou University(Natural Science Edition), 2004, 19(6): 23-26.
[35] 韩倩, 徐骞, 张宏录, 等. 草舍油田CO2驱防气窜调驱体系研究及性能评价[J]. 石油地质与工程, 2021, 35(2):67-71.
[35] HAN Qian, XU Qian, ZHANG Honglu, et al. Research and performance evaluation of CO2 flooding gas channeling prevention and profile control flooding system in Caoshe oilfield[J]. Petroleum Geology & Engineering, 2021, 35(2): 67-71.
[36] 钱卫明, 林刚, 王波, 等. 底水驱稠油油藏水平井多轮次CO2吞吐配套技术及参数评价[J]. 石油地质与工程, 2020, 34(1):107-111.
[36] QIAN Weiming, LIN Gang, WANG Bo, et al. Multi-cycle CO2 huff and puff matching technology and parameter evaluation for horizontal wells in heavy oil reservoirs with bottom water drive[J]. Petroleum Geology & Engineering, 2020, 34(1): 107-111.
[37] 刘小杰, 黄帅帅, 美合日阿依·穆泰力普, 等. CO2与混合烷烃最小混相压力的界面张力法实验研究[J]. 石油与天然气化工, 2020, 49(3):87-92.
[37] LIU Xiaojie, HUANG Shuaishuai, MUTAILIPU Meiheriayi, et al. Experiments on the minimum mixing pressure of CO2 and mixed alkane by using the interfacial tension regression method[J]. Chemical Engineering of Oil & Gas, 2020, 49(3): 87-92.
[38] 唐凡, 朱永刚, 张彦明, 等. CO2注入对储层多孔介质及赋存流体性质影响实验研究[J]. 石油与天然气化工, 2021, 50(1):72-76.
[38] TANG Fan, ZHU Yonggang, ZHANG Yanming, et al. Experimental research of the effect of CO2 injection on porous media and fluid property in reservoir[J]. Chemical Engineering of Oil & Gas, 2021, 50(1): 72-76.
[39] 蒋永平. CO2复合驱油分子动力学模拟及微观机理研究[J]. 石油实验地质, 2019, 41(2):274-279.
[39] JIANG Yongping. Molecular dynamics simulation and microscopic mechanism of CO2 composite flooding[J]. Petroleum Geology & Experiment, 2019, 41(2): 274-279.
文章导航

/