油气藏评价与开发 >
2022 , Vol. 12 >Issue 5: 825 - 832
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2022.05.015
基于分子模拟的气体水合物结构特征及储气特性研究
收稿日期: 2021-11-08
网络出版日期: 2022-09-27
Structural characteristics and gas storage properties of gas hydrates based on molecular simulation
Received date: 2021-11-08
Online published: 2022-09-27
天然气水合物资源丰富,是最具潜力的新能源之一。但目前天然气水合物尚未实现商业开采,其微观结构特征和储气机理亟待明确。基于SI、SII和SH型气体水合物的骨架和客体分子信息,构建并优化了3种典型水合物的分子模型。通过结构表征,明确了水合物的氢键数目、氢键长度、孔隙度、孔隙组成和孔径分布等结构特征,对比分析了3种典型水合物的微观结构差异。基于水合物骨架结构,采用巨正则蒙特卡洛方法研究了甲烷和二氧化碳的吸附行为,结合气体吸附量和吸附热阐明了3种水合物的储气特性及差异。结果表明,SII型水合物中平均氢键长度最大且数量最多,但其孔隙连通性最差;高压有利于提升水合物对气体的储气量,低温可增加水合物中气体吸附的稳定性;二氧化碳储存量虽小于甲烷,但二氧化碳吸附稳定性更强;气体在SII型水合物中的吸附量最大,在SI型水合物中的吸附热最大。
向雪妮 , 黄亮 , 周文 , 邹杰 , 张卓雅 . 基于分子模拟的气体水合物结构特征及储气特性研究[J]. 油气藏评价与开发, 2022 , 12(5) : 825 -832 . DOI: 10.13809/j.cnki.cn32-1825/te.2022.05.015
Natural gas hydrate are rich, which is one of the most potential new energy resources with abundant resources. However, gas hydrate has not been exploited commercially at present, and its micro-structure characteristics and gas storage mechanism need to be clarified urgently. Based on the framework and guest molecular information of SI, SII and SH type gas hydrates, the molecular models of three typical gas hydrates are constructed and optimized. The hydrogen bonds number, hydrogen bonds length, porosity, pore composition, pore size distribution and other structural characteristics of hydrates are determined by structural characterization, and the micro-structure differences of three typical hydrates are compared and analyzed. Based on the hydrate skeleton structure, the adsorption behavior of methane and carbon dioxide is studied by the grand Canonical Monte Carlo method. Combined with the adsorption capacity and adsorption heat, the gas storage characteristics and differences of the three hydrates are clarified. The results show that the hydrogen bonds in SII hydrate are the longest and the most abundant, but the pore connectivity is the worst. High pressure is conducive to increasing the gas storage capacity of hydrate, while low temperature can increase the stability of gas adsorption in hydrate. Although the amount of carbon dioxide storage is smaller than that of methane, the adsorption stability of carbon dioxide is stronger. The adsorption capacity of gas in SII type hydrate is the largest, and the adsorption heat in SI type hydrate is the largest.
[1] | 刘庭崧, 刘妮, 陈利涛, 等. CH4水合物生长速率影响因素的分子动力学模拟[J]. 原子与分子物理学报, 2020, 37(5):778-782. |
[1] | LIU Tingsong, LIU Ni, CHEN Litao, et al. Molecular dynamics simulation of factors affecting the growth rate of CH4 hydrate[J]. Journal of Atomic and Molecular Physics, 2020, 37(5): 778-782. |
[2] | 宁伏龙, 梁金强, 吴能友, 等. 中国天然气水合物赋存特征[J]. 天然气工业, 2020, 40(8):1-24. |
[2] | NING Fulong, LIANG Jinqiang, WU Nengyou, et al. Reservoir characteristics of natural gas hydrates in China[J]. Natural Gas Industry, 2020, 40(8): 1-24. |
[3] | 赵克斌, 孙长青, 吴传芝. 天然气水合物开发技术研究进展[J]. 石油钻采工艺, 2021, 43(1):7-14. |
[3] | ZHAO Kebin, SUN Changqing, WU Chuanzhi. Research progress of natural gas hydrate development technologies[J]. Oil Drilling & Production Technology, 2021, 43(1): 7-14. |
[4] | 吴能友, 李彦龙, 万义钊, 等. 海域天然气水合物开采增产理论与技术体系展望[J]. 天然气工业, 2020, 40(8):100-115. |
[4] | WU Nengyou, LI Yanlong, WANG Yizhao, et al. Prospect of marine natural gas hydrate stimulation theory and technology system[J]. Natural Gas Industry, 2020, 40(8): 100-115. |
[5] | 张世明. 东营凹陷页岩油赋存特征分子动力学模拟[J]. 油气地质与采收率, 2021, 28(5):74-80. |
[5] | ZHANG Shiming. Molecular dynamics simulation of shale oil occurrence in Dongying Depression[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(5): 74-80. |
[6] | 杨蕾. CO2置换天然气水合物的分子模拟研究[D]. 成都: 西南石油大学, 2016. |
[6] | YANG Lei. Molecular simulation of CO2 replacement of natural gas hydrate[D]. Chengdu: Southwest Petroleum University, 2016. |
[7] | 吴强, 吴琼, 刘昌岭, 等. 丙烷含量对多组分气体水合物生长速率的影响[J]. 黑龙江科技大学学报, 2012, 22(3):259-262. |
[7] | WU Qiang, WU Qiong, LIU Changling, et al. Effect of propane volume fraction on formation rate of multi-component gas hydrate[J]. Journal of Heilongjiang Institute of Science and Technology, 2012, 22(3): 259-262. |
[8] | 耿春宇, 丁丽颖, 韩清珍, 等. 气体分子对甲烷水合物稳定性的影响[J]. 物理化学学报, 2008, 24(4):595-600. |
[8] | GENG Chunyu, DING Liying, HAN Qingzhen, et al. Influence of gas molecule on stability of methane hydrate[J]. Acta Physico-Chimica Sinica, 2008, 24(4): 595-600. |
[9] | 代梦玲, 孙志高, 李娟, 等. 水合物储气促进技术研究进展[J]. 化工进展, 2020, 39(10):3975-3986. |
[9] | DAI Mengling, SUN Zhigao, LI Juan, et al. Progress on promotion technology for gas storage in hydrates[J]. Chemical Industry and Engineering Progress, 2020, 39(10): 3975-3986. |
[10] | 胥萍. 天然产物类水合物动力学抑制剂分子模拟研究[D]. 广州: 华南理工大学, 2016. |
[10] | XU Ping. Molecular simulation study on kinetic hydrate inhibitors with natural products[D]. Guangzhou: South China University of Technology, 2016. |
[11] | 陈勇. SⅡ型水合物成核与晶体生长分子动力学模拟研究[D]. 长春: 吉林大学, 2021. |
[11] | CHEN Yong. Molecular dynamics simulation of nucleation and crystal growth of SⅡ hydrate[D]. Changchun: Jilin University, 2021. |
[12] | 苟倩. 基于分子动力学模拟的甲烷水合物生成与分解过程影响因素研究[D]. 成都: 西南石油大学, 2019. |
[12] | GOU Qian. Factors influencing the formation and decomposition of methane hydrate based on molecular dynamics simulation[D]. Chengdu: Southwest Petroleum University, 2019. |
[13] | 芦文浩, 梁海峰, 王帅, 等. 环状化合物-甲烷水合物稳定性的分子模拟[J]. 天然气化工(C1化学与化工), 2019, 44(1):57-61. |
[13] | LU Wenhao, LIANG Haifeng, WANG Shuai, et al. Molecular simulation of the stability of ring compounds-methane clathrate hydrate[J]. Natural Gas Chemical Industry, 2019, 44(1): 57-61. |
[14] | 雍宇, 史博会, 丁麟, 等. 水合物生成诱导期研究进展[J]. 化工进展, 2018, 37(2):505-516. |
[14] | YONG Yu, SHI Bohui, DING Lin, et al. Research progress of hydrate formation induction time[J]. Chemical Industry and Engineering Progress, 2018, 37(2): 505-516. |
[15] | 李佳, 梁贞菊, 王照亮, 等. 不同分子模型对甲烷水合物分解微观特性表征[J]. 化工学报, 2020, 71(3):955-964. |
[15] | LI Jia, LIANG Zhenju, WANG Zhaoliang, et al. Characterization of microscopic nature of methane hydrate decomposition by different molecular models[J]. CIESC Journal, 2020, 71(3): 955-964. |
[16] | 范东稳, 卢振权, 李广之, 等. 南祁连盆地木里坳陷石炭系-侏罗系天然气水合物气源岩有机地球化学特征[J]. 石油与天然气地质, 2020, 41(2):348-358. |
[16] | Fan Dongwen, Lu Zhenquan, Li Guangzhi, et al. Organic geochemical characteristics of the Carboniferous-Jurassic potential source rocks for natural gas hydrates in the Muli Depression, Southern Qilian Basin[J]. Oil & Gas Geology, 2020, 41(2): 348-358. |
[17] | ALAVI S, RIPMEESTER J A, KLUG D D. Molecular-dynamics simulations of binary structure II hydrogen and tetrahydrofuran clathrates[J]. The Journal of Chemical Physics, 2006, 124(1): 14704-14710. |
[18] | OHGAKI K, TAKANO K, SANGAWA H, et al. Methane exploitation by carbon dioxide from gas hydrates-phase equilibria for CO2-CH4 mixed hydrate systems[J]. Journal of Chemical Engineering of Japan, 1996, 29(3): 478-483. |
[19] | 颜克凤. 水合物抑制及储氢分子模拟研究[D]. 北京: 北京化工大学, 2005. |
[19] | YAN Kefeng. Molecular simulations on the inhibitor mechanism and hydrogen storage of the hydrate[D]. Beijing: Beijing University of Chemical Technology, 2005. |
[20] | 张庆东, 李玉星, 王武昌, 等. 温度对甲烷水合物形成过程影响的分子动力学模拟[J]. 油气储运, 2015, 34(12):1288-1294. |
[20] | ZHANG Qingdong, LI Yuxing, WANG Wuchang, et al. Molecular dynamics simulation of the influence of temperature on the formation of methane hydrate[J]. Oil & Gas Storage and Transportation, 2015, 34(12): 1288-1294. |
[21] | 颜克凤, 李小森, 孙丽华, 等. 储氢笼型水合物生成促进机理的分子动力学模拟研究[J]. 物理学报, 2011,(12):640-647. |
[21] | YAN Kefeng, LI Xiaosen, SUN Lihua, et al. Molecular dynamics simulation of promotion mechanism of store hydrogen of clathrate hydrate[J]. Acta Physics Sinica, 2011, (12): 640-647. |
[22] | 韩晓敏. 天然气水合物形成分子动力学模拟研究[D]. 北京: 北京化工大学, 2020. |
[22] | HAN Xiaomin. Study on molecular dynamics simulations of natural gas hydrate formation[D]. Beijing: Beijing University of Chemical Technology, 2020. |
/
〈 | 〉 |