地热开发与利用

废弃油气井改造的地热井换热性能影响因素模拟研究

  • 郭鸿 ,
  • 夏岩 ,
  • 陈雷 ,
  • 金光 ,
  • 刘建强
展开
  • 1.陕西省水工环地质调查中心,陕西 西安 710068
    2.中国石油长庆油田勘探开发研究院,陕西 西安 710018
    3.中国石油长庆油田分公司第一采油厂,陕西 西安 716000
    4.陕西省城市地质与地下空间工程技术研究中心,陕西 西安 710068
郭鸿(1986—),男,本科,高级工程师,从事地热地质及油田地热开发研究。地址:陕西省西安市碑林区友谊西路243号,邮政编码:710068。E-mail:guohong115@163.com

收稿日期: 2022-05-16

  网络出版日期: 2022-12-02

Numerical simulation on influence factors of heat transfer performance of geothermal wells which transformed from abandoned oil and gas wells

  • Hong GUO ,
  • Yan XIA ,
  • Lei CHEN ,
  • Guang JIN ,
  • Jianqiang LIU
Expand
  • 1. Shaanxi Hygrogeology Engineering Geology and Environment Geology Survey Center, Xi’an, Shaanxi 710068, China
    2. Exploration and Development Research Institute, PetroChina Changqing Oilfield, Xi’an, Shaanxi 710018, China
    3. No. 1 Oil Production Plant, PetroChina Changqing Oilfield, Xi’an, Shaanxi 716000, China
    4. Shaanxi Engineering Technology Research Center for Urban Geology and Underground Space, Xi’an, Shaanxi 710068, China

Received date: 2022-05-16

  Online published: 2022-12-02

摘要

采用中深层地埋管换热技术改造废弃或关停油气井是油田地热开发的一种方式,有助于油田低碳供热并降低地热开发成本。为了提高单井取热量及更好地指导改造工作,需对改造井换热性能的影响因素进行分析。通过数值模拟方法分析改造井换热性能的影响因素,分别对地质、井和工况等参数进行了分析。主要结论为:①地质参数中的地温梯度和岩层导热系数对单井取热量有较大影响,地质参数应作为改造选井首要考虑因素;②井参数中的井深、套管外径、中心换热管外径和导热系数对单井取热量有一定影响,在改造选井及方案制定时需要考虑;③工况参数中的入井水温和入井流速对单井取热量有影响,地面换热系统设计时应考虑工况参数的影响。此研究对于采用同类换热技术的改造目标井优选、改造方案制定、运行工况参数优化都具有参考意义。

本文引用格式

郭鸿 , 夏岩 , 陈雷 , 金光 , 刘建强 . 废弃油气井改造的地热井换热性能影响因素模拟研究[J]. 油气藏评价与开发, 2022 , 12(6) : 850 -858 . DOI: 10.13809/j.cnki.cn32-1825/te.2022.06.003

Abstract

The heat exchange technology of the medium-deep buried pipes of the abandoned oil and gas wells is one of the methods of oilfield geothermal development, which is helpful for low-carbon heating in oilfields and reduces the cost of geothermal development. In order to improve the heat transfer of a single well and better guide the reconstruction work, it is necessary to analyze the influencing factors of the heat transfer performance of the geothermal well after reconstruction. In this paper, numerical simulation method is used to analyze the influencing factors of the heat transfer performance of the geothermal well after reconstruction, and the parameters such as geology, well and working conditions are analyzed respectively. The main analysis conclusions are: ① The geothermal gradient and the thermal conductivity of the rock formation in the geological parameters have a great influence on the heat transfer of a single well, and the geological parameters should be the primary consideration factors in the selection of the stimulation target well. ② Well depth, casing outer diameter, and thermal conductivity of central heat exchange tube in the well parameters have certain influence on the heat exchange of a single well, which should be considered when selecting target well and formulating the reconstruction plan. ③ The water temperature and flow rate entering the well in the working condition parameters have an influence on the heat exchange of a single well, and the influence of the working condition parameters should be considered in the design of the surface heat exchange system. The research in this paper has reference significance for the selection of stimulation target wells, the formulation of stimulation plans, and the optimization of operating conditions parameters using the same heat exchange method.

参考文献

[1] 陈新军. 油气共伴生矿产综合勘查评价发展现状与趋势[J]. 中国国土资源经济, 2020, 33(5): 34-38.
[1] CHEN Xinjun. Development status and trends of comprehensive exploration and evaluation of oil and gas associated minerals[J]. Natural Resource Economics of China, 2020, 33(5): 34-38.
[2] 谷雪曦, 梁海军, 黄嘉超, 等. 新时代地热产业发展新机遇与方向[J]. 石油石化绿色低碳, 2021, 6(3): 7-12.
[2] GU Xuexi, LIANG Haijun, HUNG Jiachao, et al. New opportunities and directions for geothermal industry in new era[J]. Green Petroleum & Petrochemicals, 2021, 6(3): 7-12.
[3] 董秋生, 黄贤龙, 郎振海, 等. 废弃油井改造为地热井技术分析[J]. 探矿工程, 2016, 43(6): 18-21.
[3] DONG Qiusheng, HUANG Xianlong, LANG Zhenhai, et al. Technical analysis on transforming abandoned oil well into geothermal well[J]. Exploration Engineering, 2016, 43(6): 18-21.
[4] 周晓奇. 东濮凹陷废弃井改造成地热井先导试验[J]. 油气井测试, 2018, 27(4): 27-34.
[4] ZHOU Xiaoqi. Pilot test of transforming abandoned wells into geothermal wells in Dongpu Depression[J]. Well Testing, 2018, 27(4): 27-34.
[5] 阚长宾, 亓发庆, 于晓聪, 等. 利用废弃油井开发地热能[J]. 可再生能源, 2008, 26(1): 90-92.
[5] KAN Changbin, QI Faqing, YU Xiaocong, et al. Exploiting geothermal energy from the abandoned well[J]. Renewable Energy Resources, 2008, 26(1): 90-92.
[6] 宋恩武, 李岚, 王少娟, 等. 将弃用油(气)井及注水井改造成地热井的方法简介[J]. 山东国土资源, 2005, 21(S1): 38-39.
[6] SONG Enwu, LI Lan, WANG Shaojuan, et al. A brief introduction to the method of transforming abandoned oil(gas) wells and water injection wells into geothermal wells[J]. Shandong Land and Resources, 2005, 21(S1): 38-39.
[7] 李骥, 徐伟, 李建峰, 等. 中深层地埋管供热技术综述及工程实测分析[J]. 暖通空调, 2020, 50(8): 35-39.
[7] LI JI, XU Wei, LI Jianfeng, et al. Heat supply technology review and engineering measurement analysis of medium and deep buried pipes[J]. Heating Ventilating & Air Conditioning, 2020, 50(8): 35-39.
[8] 王德敬, 胡松涛, 高志友, 等. 中深层套管式地埋管换热器性能的参数分析[J]. 区域供热, 2018, 37(3): 1-7.
[8] WANG Dejing, FANG Liang, GAO Zhiyou, et al. Parameter analysis of the performance of the deep borehole heat exchanger[J]. District Heating, 2018, 37(3): 1-7.
[9] 黄帅, 董建锴, 姜建中, 等. 中深层同轴套管式地埋管换热器取热特性[J]. 东北电力大学学报, 2021, 41(4): 16-23.
[9] HUNG Shuai, DONG Jiankai, JIANG Jianzhong, et al. Heat extraction performance of medium and deep borehole heat exchanger[J]. Journal of Northeast Electric Power University, 2021, 41(4): 16-23.
[10] 鲍玲玲, 徐豹, 王子勇, 等. 中深层同轴套管式地埋管换热器传热性能分析[J]. 地球物理学进展, 2020, 35(4): 1217-1222.
[10] BAO Lingling, XU Bao, WANG Ziyong, et al. Heat transfer performance analysis of the middle-deep coaxial casing ground heat exchanger[J]. Progress in Geophysics, 2020, 35(4): 1217-1222.
[11] 刘铮, 刘少勇, 高嵩. 中深层地埋管换热器管径比对换热性能的影响研究[J]. 电力勘测设计, 2021, 9(9): 67-73.
[11] LIU Zheng, LIU Shaoyong, GAO Song. Investigation on the effects under different diameter ratios of inner and outer pipes on heat transfer performance of medium deep borehole heat exchanger[J]. Electric Power Survey & Design, 2021, 9(9): 67-73.
[12] 唐晓音, 程璐瑶, 许威, 等. 西安地区中深层套管式地埋管换热性能数值模拟[J]. 地质科学, 2021, 56(3): 985-999.
[12] TANG Xiaoyin, CHENG Luyao, XU Wei, et al. Numerical study on factors that influence the heat transfer performance of mid?deep coaxial casing heat exchanger in the Xi’an area[J]. Chinese Journal of Geology, 2021, 56(3): 985-999.
[13] 尚宏波, 赵春虎, 靳德武, 等. 中深层地热单井换热数值计算[J]. 煤田地质与勘探, 2019, 47(6): 159-166.
[13] SHANG Hongbo, ZHAO Chunhu, JIN Dewu, et al. Numerical calculation of heat transfer in single medium-deep geothermal well[J]. Coal Geology & Exploration, 2019, 47(6): 159-166.
[14] 蔡皖龙, 刘俊, 王沣浩, 等. 深层地埋管换热器换热性能模拟及稳定性研究[J]. 太阳能学报, 2020, 41(2): 158-164.
[14] CAI Wanlong, LIU Jun, WANG Fenghao, et al. Research on heat transfer performance and stability of deep borehole heat exchanger[J]. Acta Energiae Solaris Sinica, 2020, 41(2): 158-164.
[15] 余恒昌. 矿山地热与热害治理[M]. 北京: 煤炭工业出版社, 1991.
[15] YU Hengchang. Mine geothermal and heat damage control[M]. Beijing: Coal Industry Press, 1991.
文章导航

/