地热开发与利用

干热岩储层多簇缝网压裂热流固顺序耦合模型研究

  • 陈劭颖 ,
  • 王伟 ,
  • 杨清纯 ,
  • 张立松
展开
  • 中国石油大学(华东)储运与建筑工程学院,山东 青岛 266580
陈劭颖(1996—),女,在读硕士研究生,从事岩石力学相关工作。地址:山东省青岛市黄岛区中国石油大学(华东),邮政编码:266555。E-mail:1277709783@qq.com

收稿日期: 2022-07-01

  网络出版日期: 2022-12-02

基金资助

山东省自然科学基金“基于YADE种群平衡法的原始储层条件下煤岩破碎—块体滑落—井眼坍塌演化机理研究”(ZR2021ME024);中央高校基本科研业务费专项基金“基于种群平衡法的破碎性煤层钻井眼坍塌细观演化机理”(19CX02034A)

Sequential coupling thermal-hydro-mechanical model for multiple cluster of fracturing network fracturing in dry hot rock reservoir

  • Shaoying CHEN ,
  • Wei WANG ,
  • Qingchun YANG ,
  • Lisong ZHANG
Expand
  • College of Pipeline and Civil Engineering, China University of Petroleum(East China), Qingdao, Shandong 266580, China

Received date: 2022-07-01

  Online published: 2022-12-02

摘要

针对干热岩储层压裂的热流固耦合模型计算复杂且难以实现大规模多簇缝网压裂模拟的问题,提出了一种干热岩压裂顺序耦合模拟方法,建立了单簇裂缝和多簇缝网的裂缝扩展热流固顺序耦合模型,实现了大规模干热岩多簇缝网压裂的热流固顺序耦合模拟。利用多簇缝网热流固顺序耦合模型讨论了地层温度、干热岩脆性指数、应力场、排量等关键参数对多簇缝网扩展的影响。模拟结果表明:较高的温差、较大的岩石脆性指数以及较大的注入排量能促进缝网的扩展,而较大的应力差不利于缝网的扩展。

本文引用格式

陈劭颖 , 王伟 , 杨清纯 , 张立松 . 干热岩储层多簇缝网压裂热流固顺序耦合模型研究[J]. 油气藏评价与开发, 2022 , 12(6) : 869 -876 . DOI: 10.13809/j.cnki.cn32-1825/te.2022.06.005

Abstract

In order to solve the problem that thermal-hydro-mechanical coupling model of hot-dry-rock(HDR) reservoir fracturing is complex and it is difficult to achieve large-scale multiple cluster of fracturing network simulation, a sequential coupling simulation method of HDR fracturing is proposed. By establishing a fracture expansion thermodynamic solid sequential coupling model of single cluster fracture and multi-cluster fracture network, the thermal-hydro-mechanical sequential coupling simulation of large-scale HDR fracture network is realized. The influence of brittleness index, stress field displacement and other key parameters on the propagation of fracture network are analyzed in this model. The results showed that high temperature difference, large brittleness index and large injection pumpage could promote the propagation of fracture network, but large stress difference is not conducive to the propagation of fracture network.

参考文献

[1] GHASSEMI A. A review of some rock mechanics issues in geothermal reservoir development[J]. Geotechnical and Geological Engineering, 2012, 30(3): 647-664.
[2] 许天福, 张延军, 曾昭发, 等. 增强型地热系统(干热岩)开发技术进展[J]. 科技导报, 2012, 30(32): 42-45.
[2] XU Tianfu, ZHANG Yanjun, ZENG Zhaofa, et al. Technology progress in an enhanced geothermal system (hot dry rock)[J]. Science and Technology Review, 2012, 30(32): 42-45.
[3] 解经宇, 王丹, 李宁, 等. 干热岩压裂建造人工热储发展现状及建议[J]. 地质科技通报, 2022, 41(3): 321-329.
[3] XIE Jingyu, WANG Dan, LI Ning, et al. Development status and suggestions of hot dry rock hydraulic fracturing for building geothermal reservoirs[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 321-329.
[4] 李龙龙, 姚军, 李阳, 等. 分段多簇压裂水平井产能计算及其分布规律[J]. 石油勘探与开发, 2014, 41(4): 504-508.
[4] LI Longlong, YAO Jun, LI Yang, et al. Productivity calculation and distribution of staged multi-cluster fractured horizontal wells[J]. Petroleum Exploration and Development, 2014, 41(4): 504-508.
[5] TOMAC I, SAUTER M. A review on challenges in the assessment of geomechanical rock performance for deep geothermal reservoir development[J]. Renewable and Sustainable Energy Reviews, 2018, 82(3): 3972-3980.
[6] 胡剑, 苏正, 吴能友, 等. 增强型地热系统热流耦合水岩温度场分析[J]. 地球物理学进展, 2014, 29(3): 1391-1398.
[6] HU Jian, SU Zheng, WU Nengyou, et al. Analysis on temperature fields of thermal-hydraulic coupled fluid and rock in Enhanced Geothermal System[J]. Progress in Geophysics, 2014, 29(3): 1391-1398.
[7] TOMAC I, GUITERREZ M. Formulation and implementation of coupled forced heat convection and heat conduction in DEM[J]. Acta Geotechnica: An International journal for Geoengineering, 2015, 10(4): 421-433.
[8] TOMAC I, GUITERREZ M. Coupled hydro-thermo-mechanical modeling of hydraulic fracturing in quasi-brittle rocks using BPM-DEM[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9(1): 92-104.
[9] 赵阳升, 王瑞凤, 胡耀青, 等. 高温岩体地热开发的块裂介质固流热耦合三维数值模拟[J]. 岩石力学与工程学报, 2002, 21(12): 1751-1755.
[9] ZHAO Yangsheng, WANG Ruifeng, HU Yaoqing, et al. 3D numerical simulation for coupled THM of rock matrix-fractured media in heat extraction in HDR[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(12): 1751-1755.
[10] 赵延林, 曹平, 赵阳升, 等. 双重介质温度场-渗流场-应力场耦合模型及三维数值研究[J]. 岩石力学与工程学报, 2007, 26(S2): 4024-4031.
[10] ZHAO Yanlin, CAO Ping, ZHAO Yangsheng, et al. Dual media model for thermo-hydro-mechanical coupling and 3D numerical simulation[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S2): 4024-4031.
[11] 郑鑫, 郭春, 徐建峰, 等. 单裂隙岩体的热流固耦合数值模拟与分析[J]. 现代隧道技术, 2018, 55(S2): 1263-1268.
[11] ZHENG Xin, GUO Chun, XUN Jianfeng, et al. Numerical simulation and analysis of the coupled Heat-Fluid-Solid in single fractured rock mass[J]. Modern Tunnelling Technology, 2018, 55(S2): 1263-1268.
[12] 张伟, 曲占庆, 郭天魁, 等. 热应力影响下干热岩水压致裂数值模拟[J]. 岩土力学, 2019, 40(5): 2001-2008.
[12] ZHANG Wei, QU Zhanqing, GUO Tiankui, et al. Numerical simulation of hydraulic fracturing in hot dry rocks under the influence of thermal stress[J]. Rock and Soil Mechanics, 2019, 40(5): 2001-2008.
[13] 张奇. 低渗透页岩层压裂改造的热—流—固耦合机理及应用研究[D]. 徐州: 中国矿业大学, 2019.
[13] ZHANG Qi. Coupled thermal-hydro-mechanical mechanism and its application for fracturing reform of low permeability shale reservoirs[D]. Xuzhou: China University of Mining and Technology, 2019.
[14] KOH J, ROSHAN H, RAHMAN S S. A numerical study on the long term thermo-poroelastic effects of cold water injection into naturally fractured geothermal reservoirs[J]. Computers and Geotechnics, 2011, 38(5): 669-682.
[15] WATANABE N, WANG W Q, MCDERMOTT C I, et al. Uncertainty analysis of thermo-hydro-mechanical coupled processes in heterogeneous porous media[J]. Computational Mechanics, 2010, 45(4): 263.
[16] ROUSSEL N P, SHARMA M M. Optimizing Fracture Spacing and Sequencing in Horizontal-Well Fracturing[J]. SPE Production and Facilities, 2011, 26(2): 173-184.
[17] 李宁. 增强型地热系统水力压裂裂缝扩展规律研究[D]. 北京: 中国石油大学(北京), 2020.
[17] LI Ning. Investigation into hydraulic fracture propagation mechanism in enhanced geothermal system[D]. Beijing: China University of Petroleum(Beijing), 2020.
[18] 王伟, 付豪, 邢林啸, 等. 基于扩展有限元法的碳酸盐岩地热储层岩体裂缝扩展行为[J]. 地球科学, 2021, 46(10): 3509-3519.
[18] WANG Wei, FU Hao, XING Linxiao, et al. Crack propagation behavior of carbonatite geothermal reservoir rock mass based on extended finite element method[J]. Earth Science, 2021, 46(10): 3509-3519.
[19] 张广明, 刘合, 张劲, 等. 储层流固耦合的数学模型和非线性有限元方程[J]. 岩土力学, 2010, 31(5): 1657-1662.
[19] ZHANG Guangming, LIU He, ZHANG Jin, et al. Mathematical model and nonlinear finite element equation for reservoir fluid-solid coupling[J]. Rock and Soil Mechanics, 2010, 31(5): 1657-1662.
[20] 衡帅. 页岩气储层水力压裂网状裂缝形成机理研究[D]. 北京: 中国科学院大学, 2015.
[20] HENG Shuai. Mechanism study of hydraulic fracturing network fracture in shale gas reservoir[D]. Beijing: University of Chinese Academy of Sciences, 2015.
[21] ZHANG G M, LIU H, ZHANG J, et al. Three-dimensional finite element simulation and parametric study for horizontal well hydraulic fracture[J]. Journal of Petroleum Science and Engineering, 2010, 72: 310-317.
[22] 张乐, 张伟, 贺甲元, 等. 急剧冷却作用下高温岩石细观损伤与增渗机制研究[J]. 地球物理学进展, 2022, 37(2): 551-560.
[22] ZHANG Le, ZHANG Wei, HE Jiayuan, et al. Study on meso damage and seepage enhancement mechanism of high temperature rocks under rapid cooling[J]. Progress in Geophysics, 2022, 37(2): 551-560.
[23] HUCKA V, DAS B. Brittleness determination of rocks by different methods[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1974, 11(10): 389-392.
文章导航

/