综合研究

缝洞型油藏注烃气提高采收率参数优化数值模拟研究

  • 程晓军
展开
  • 1.中国石化西北油田分公司,新疆 乌鲁木齐 830011
    2.中国石化碳酸盐岩缝洞型油藏提高采收率重点实验室,新疆 乌鲁木齐 830011
程晓军(1974—),男,硕士,高级工程师,主要从事油气藏工程、提高采收率、智能化油气田等开发生产工作。地址:新疆维吾尔自治区乌鲁木齐市新市区长春南路466号,邮政编码:830011。E-mail:chenxj.xbsj@sinopec.com

收稿日期: 2022-03-24

  网络出版日期: 2022-12-02

基金资助

中国石化碳酸盐岩缝洞型油藏提高采收率重点实验室基金项目“缝洞型多尺度大型物理模型构建研究”(KL21022)

Enhanced oil recovery and parameter optimization of hydrocarbon injection in fractured-cavity reservoirs

  • Xiaojun CHENG
Expand
  • 1. Sinopec Northwest Oilfield Company, Urumqi, Xinjiang 830011, China
    2. Sinopec Key Laboratory of Enhanced Recovery of Fracture-Cave Reservoir, Urumqi, Xinjiang 830011, China

Received date: 2022-03-24

  Online published: 2022-12-02

摘要

缝洞型油藏储集空间多样、非均质性极强、油水性质差异大且水驱非混相氮气驱流度比大,水窜气窜严重、波及范围有限,一次采油和二次采油阶段原油采收率远低于碎屑砂岩油藏。以塔河油田S91缝洞单元为对象,在地质建模、历史拟合、剩余油表征和相态实验拟合基础上,开展缝洞型油藏注烃气提高采收率数值模拟研究,评价缝洞型油藏烃气混相条件,优化注烃气提高采收率参数。结果表明:S91单元注入烃气与地层原油最小混相压力为42.5 MPa,在目前地层压力下可以实现混相,混相机理为汽化气驱,随注入气重烃组分含量增加至21 %,最小混相压力为35.62 MPa,采收率增幅到最大值。注气方式为裂缝型储集体注气,溶洞型储集体采液,注气参数优选注气量168×104 m3、注气速度4×104 m3/d及注采比1∶0.9。

本文引用格式

程晓军 . 缝洞型油藏注烃气提高采收率参数优化数值模拟研究[J]. 油气藏评价与开发, 2022 , 12(6) : 902 -909 . DOI: 10.13809/j.cnki.cn32-1825/te.2022.06.009

Abstract

Fractured-cavity reservoirs have diverse storage spaces, strong heterogeneity, large differences in oil-water properties, high mobility ratio of immiscible nitrogen flooding in water flooding, serious water and gas channeling, limited sweeping range, and primary and secondary oil recovery stages. Oil recovery is much lower than that of clastic sandstone reservoirs. Taking the S91 fracture-cavity unit in Tahe Oilfield as the object, on the basis of geological modeling, history matching, remaining oil characterization and phase state experimental fitting, a numerical simulation study on enhanced oil recovery by hydrocarbon injection in fractured-cavity reservoirs is carried out, so as the evaluation of the hydrocarbon-gas miscibility conditions in fractured-cavity reservoirs, and the optimization of EOR parameters of hydrocarbon injection. The results show that the minimum miscibility pressure of injected hydrocarbon gas and formation crude oil in S91 unit is 42.5 MPa, which can be miscible under the current formation pressure. The mechanism of miscibility is vaporization gas flooding. As the content of heavy hydrocarbon components in the injected gas increases, the recovery factor increases. The gas injection method is gas injection in fractured reservoirs, and liquid recovery in caved reservoirs. The gas injection parameters are preferably 168×104 m3, gas injection rate of 4×104 m3/d, and injection-production ratio of 1∶0.9.

参考文献

[1] 袁士义, 王强, 李军诗, 等. 注气提高采收率技术进展及前景展望[J]. 石油学报, 2020, 41(12): 1623-1632.
[1] YUAN Shiyi, WANG Qiang, LI Junshi, et al. Technology progress and prospects of enhanced oil recovery by gas injection[J]. Acta Petrolei Sinica, 2020, 41(12): 1623-1632.
[2] 焦方正. 塔里木盆地深层碳酸盐岩缝洞型油藏体积开发实践与认识[J]. 石油勘探与开发, 2019, 46(3): 552-558.
[2] JIAO Fangzheng. Practice and knowledge of volumetric development of deep fractured-vuggy carbonate reservoir in Tarim Basin[J]. Petroleum Exploration and Development, 2019, 46(3): 552-558.
[3] XIAO Y, ZHANG Z W, JIANG T W, et al. Dynamic and static combination method for fracture-vug unit division of fractured-vuggy reservoirs[J]. Arabian Journal for Science & Engineering, 2017, 43(6): 1-8.
[4] MING Q, HOU J, QI P, et al. Experimental study of fluid behaviors from water and nitrogen floods on a 3-D visual fractured-vuggy model[J]. Journal of Petroleum Science & Engineering, 2018, 166(3): 871-879.
[5] 张立安, 王少鹏, 张岚, 等. 通过地质建模剖析古潜山碳酸盐岩裂缝性储层地质特征[J]. 油气藏评价与开发, 2021, 11(5): 688-693.
[5] ZHANG Li'an, WANG Shaopeng, ZHANG Lan, et al. Analysis on geological characteristics of fractured carbonate reservoir in buried-hill by geological modeling[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(5): 688-693.
[6] 郑松青, 杨敏, 康志江, 等. 塔河油田缝洞型碳酸盐岩油藏水驱后剩余油分布主控因素与提高采收率途径[J]. 石油勘探与开发, 2019, 46(4): 746-754.
[6] ZHENG Songqing, YANG Min, KANG Zhijiang, et al. Controlling factors of remaining oil distribution after water flooding and enhanced oil recovery methods for fracture-cavity carbonate reservoirs in Tahe Oilfield[J]. Petroleum Exploration and Development, 2019, 46(4): 746-754.
[7] 周禄凯. 塔河油田缝洞型碳酸盐岩油藏气窜后剩余油分布及差异化动用方法[J]. 新疆石油天然气, 2019, 15(1): 58-61.
[7] ZHOU Lukai. Residual oil distribution and differential development after gas channeling of paleo-cave reservoir in Tahe Oilfield[J]. Xinjiang Oil & Gas, 2019, 15(1): 58-61.
[8] 戴彩丽, 方吉超, 焦保雷, 等. 中国碳酸盐岩缝洞型油藏提高采收率研究进展[J]. 中国石油大学学报(自然科学版), 2018, 42(6): 67-78.
[8] DAI Caili, FANG Jichao, JIAO Baolei, et al. Development of the research on EOR for carbonate fractured-vuggy reservoirs in China[J]. Journal of China University of Petroleum (Edition of Natural Science), 2018, 42(6): 67-78.
[9] 吴昊镪, 彭小龙, 朱苏阳, 等. 基于数值模拟法与油藏开发经营一体化思想的页岩油藏经济决策研究[J]. 油气藏评价与开发, 2021, 11(3): 404-413.
[9] WU Haoqiang, PENG Xiaolong, ZHU Suyang, et al. Economic decision of shale reservoir based on numerical simulation and integration of reservoir development and management[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(3): 404-413.
[10] 付天宇, 刘启国, 岑雪芳, 等. 碳酸盐岩三重介质气藏NPI产量递减分析研究[J]. 油气藏评价与开发, 2021, 11(6): 905-910.
[10] FU Tianyu, LIU Qiguo, CEN Xuefang, et al. Normalized pressure integral production analysis of triporate-uniphase parallel inter-porosity flow model[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(6): 905-910.
[11] 马德胜, 王强, 王正波, 等. 提高采收率[M]. 北京: 石油工业出版社, 2019.
[11] MA Desheng, WANG Qiang, WANG Zhengbo, et al. Enhanced oil recovery[M]. Beijing: Petroleum Industry Press, 2019.
[12] 胡蓉蓉. 缝洞型碳酸盐岩油藏提高采收率机理研究[D]. 青岛: 中国石油大学(华东), 2015.
[12] HU Rongrong. Study on EOR mechanism in fractured-vuggy carbonate reservoirs[D]. Qingdao: China University of Petroleum (East China), 2015.
[13] VALDEZ R, PENNELL S P, CHENG A, et al. Miscible hydrocarbon GOGD pilot in the Yates Field Unit[C]// Paper SPE-190248-MS presented at the SPE Improved Oil Recovery Conference, Tulsa, Oklahoma, USA, April 2018.
[14] MOHAMMED M, BABADAGLI T. New insights into the interfacial phenomena during miscible displacement by hydrocarbon solvents and CO2 in heavy oil reservoirs[C]// Paper SPE-200456-MS presented at the SPE Improved Oil Recovery Conference, Virtual, August 2020.
[15] KHAN M R, KALAM S, KHAN R A, et al. Comparative analysis of intelligent algorithms to predict the minimum miscibility pressure for hydrocarbon gas flooding[C]// Paper SPE-197868-MS presented at the Abu Dhabi International Petroleum Exhibition & Conference, Abu Dhabi, UAE, November 2019.
[16] 张俊, 周自武, 王伟胜, 等. 葡北油田气水交替驱提高采收率矿场试验研究[J]. 石油勘探与开发 2004, 31(6): 85-87.
[16] ZHANG Jun, ZHOU Ziwu, WANG Weisheng, et al. EOR field test of gas-water alternative injection in Pubei Oilfield[J]. Petroleum Exploration and Development, 2004, 31(6): 85-87.
[17] 范家伟, 陶正武, 王彦秋, 等. 东河油田注天然气重力辅助混相驱提高采收率关键技术[C]// 2020油气田勘探与开发国际会议论文集. 西安: 西安石油大学出版社, 2020: 1090-1098.
[17] FAN Jiawei, TAO Zhengwu, WANG Yanqiu, et al. The Key technology of gravity assisted miscible flooding for natural gas injection in donghe oilfield[C]// 2020 International Field Exploration and Development Conference. Xi'an: Xi'an Petroleum University Press, 2020: 1090-1098.
[18] DONG J, WU S, XING G, et al. Factors affecting water alternating hydrocarbon gas miscible flooding in a low permeability reservoir[C]// Paper IPTC-19063-MS presented at the International Petroleum Technology Conference, Beiing, China, March 2019.
[19] 郑家朋, 王传飞, 赵辉, 等. 冀东油田高13断块注烃气驱提高采收率优化研究[J]. 石油天然气学报, 2009, 31(4): 131-135.
[19] ZHENG Jiapeng, WANG Chuanfei, ZHAO Hui, et al. Study on optimization of enhanced oil recovery by hydrocarbon gas flooding in block Gao-13 of Jidong Oilfield[J]. Journal of Oil and Gas Technology, 2009, 31(4): 131-135.
[20] 韩海水, 周代余, 王丽, 等. 超深巨厚油藏顶部注烃气提高采收率调控机制[J]. 中国石油大学学报(自然科学版), 2021, 45(2): 104-110.
[20] HAN Haishui, ZHOU Daiyu, WANG Li, et al. Regulation mechanism of EOR for natural gas crestal injection in super deep and thick reservoir[J]. Journal of China University of Petroleum (Edition of Natural Science), 2021, 45(2): 104-110.
[21] 胡蓉蓉, 姚军, 孙致学, 等. 塔河油田缝洞型碳酸盐岩油藏注气驱油提高采收率机理研究[J]. 西安石油大学学报(自然科学版), 2015, 30(2): 49-53.
[21] HU Rongrong, YAO Jun, SUN Zhixue, et al. Study on EOR mechanism by gas injection replacing oil in fractured-vuggy carbonate reservoir in Tahe Oilfield[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2015, 30(2): 49-53.
[22] 李吉康, 孙致学, 谭涛, 等. 深层缝洞型油藏烃气混相驱可行性及影响因素[J]. 新疆石油地质, 2021, 42(6): 714-719.
[22] LI Jikang, SUN Zhixue, TAN Tao, et al. Feasibility and influencing factors of miscible hydrocarbon gas flooding for deep fracture-vuggy reservoirs[J]. Xinjiang Petroleum Geology, 2021, 42(6): 714-719.
[23] 胡蓉蓉, 姚军, 王晨晨, 等. 缝洞型碳酸盐岩油藏非混相气驱采收率影响因素[J]. 新疆石油地质, 2015, 36(4): 470-474.
[23] HU Rongrong, YAO Jun, WANG Chenchen, et al. Influence factors of immiscible gas flooding recovery in fractured-vuggy carbonate reservoirs[J]. Xinjiang Petroleum Geology, 2015, 36(4): 470-474.
[24] 唐磊, 王建峰, 曹敬华, 等. 塔里木盆地顺北地区超深断溶体油藏地质工程一体化模式探索[J]. 油气藏评价与开发, 2021, 11(3): 329-339.
[24] TANG Lei, WANG Jianfeng, CAO Jinghua, et al. Geology-engineering integration mode of ultra-deep fault-karst reservoir in Shunbei area, Tarim Basin[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(3): 329-339.
[25] 赵军, 张涛, 何胜林, 等. 基于参数优选的储层渗透率深度置信网络模型预测初探[J]. 油气藏评价与开发, 2021, 11(4): 577-585.
[25] ZHAO Jun, ZHANG Tao, HE Shenglin, et al. Prediction of reservoir permeability by deep belief network based on optimized parameters[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(4): 577-585.
文章导航

/