综合研究

阳离子表面活性剂遮蔽作用导致的酸化缓速研究

  • 申鑫 ,
  • 郭建春 ,
  • 王世彬
展开
  • 西南石油大学油气藏地质及开发工程国家重点实验室,四川 成都 610500
申鑫(1992—),男,在读博士研究生,主要从事油气藏增产改造理论与技术方面的研究。地址:四川省成都市新都区新都大道8号,邮政编码:610500。E-mail:386643407@qq.com

收稿日期: 2021-12-02

  网络出版日期: 2023-01-30

基金资助

国家自然科学基金联合基金项目重点支持项目“四川盆地深层含硫碳酸盐岩气藏立体酸压基础研究”(U21A20105)

Acidification retardation caused by shielding of cationic surfactants

  • Xin SHEN ,
  • Jianchun GUO ,
  • Shibin WANG
Expand
  • State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China

Received date: 2021-12-02

  Online published: 2023-01-30

摘要

为了减轻传统稠化酸在碳酸盐岩多孔介质中的吸附滞留伤害,降低其对于致密碳酸盐岩改造后渗透率的伤害。提出采用阳离子表面活性剂遮蔽在岩石表面进行改性进而缓速的方式,以鄂尔多斯盆地马家沟组碳酸盐岩为研究对象,根据基本性质测试确定不同碳链长度阳离子表面活性剂界面改性能力,并利用分子模拟技术结合原子力显微镜、润湿角观测提出阳离子表面活性剂缓速机理,再通过动静态缓速性能测试和伤害评价实验研究阳离子表面活性剂缓速性能及地层伤害程度。研究结果表明:①碳链长度会影响表面活性剂分子吸附形态,进而改变其界面吸附效果,十四烷基三甲基氯化铵可在岩石表面形成直立致密吸附层,润湿改性效果最佳;②阳离子表面活性剂以界面吸附作用对岩石表面进行掩蔽覆盖,增加其疏水性能,阻碍H+接触到岩石表面,控制表面反应速率,达到缓速目的;③相较于常规酸,阳离子表面活性剂具有良好的动静态缓速性能,各项动力学参数降低50 %~60 %,减低了对碳酸盐岩孔喉伤害。研究认为:季铵盐阳离子表面活性剂具备分子量低、界面吸附能力强的优势,在保持缓速能力的同时,有效降低稠化酸对地层伤害程度;该项研究有助于认识表面活性剂缓速性能、改进缓速酸体系、提高碳酸盐岩储层改造效果等都具有积极的意义。

本文引用格式

申鑫 , 郭建春 , 王世彬 . 阳离子表面活性剂遮蔽作用导致的酸化缓速研究[J]. 油气藏评价与开发, 2023 , 13(1) : 117 -126 . DOI: 10.13809/j.cnki.cn32-1825/te.2023.01.013

Abstract

In order to reduce the damage of adsorption and retention of traditional gelled acid in carbonate porous media, and reduce the damage to permeability of dense carbonate rock after stimulation. It is proposed that the quaternary ammonium cationic surfactant can be adsorbed on the rock surface for modification and then show retarding performance. Taking the carbonate rock in Majiagou Formation of Ordos Basin as the research object, based on the basic property tests, the adsorption capacity of cationic surfactant with different carbon chain length is determined, and the retarding mechanism of cationic surfactant is proposed by using molecular simulation technology combined with atomic force microscope and wetting angle observation. Then, the retarding performance and formation damage degree of cationic surfactant are studied by dynamic/static retarding performance test and damage evaluation experiment. The research results show that: ① Carbon chain length affects the interfacial adsorption effect by changing the adsorption form of surfactant molecules. C14TAC can form a vertical dense adsorption layer on the rock surface with the best wetting modification effect. ② The surface of rock is covered by cationic surfactant with interface adsorption, which can increase its hydrophobicity, prevent H+ from contacting the rock surface, control the surface reaction rate, and achieve the purpose of retardation. ③ Compared with conventional acids, cation surfactants have good actionic and static slow performance, the kinetic parameters are reduced by 50 %~60 %, reducing the damage to the carbonate orifice throat. It is concluded that the quaternary ammonium salt cationic surfactant has the advantages of low molecular weight and strong interfacial adsorption ability, while maintaining the retarding ability, and effectively reducing the damage of thickened acid to the formation. This study is helpful to understand the rapid performance of the surfactant, improve the slow acid system, and improve the effect of carbonate reservoir reformation. They are all of positive significance.

参考文献

[1] 谢锦龙, 黄冲, 王晓星. 中国碳酸盐岩油气藏探明储量分布特征[J]. 海相油气地质, 2009, 14(2): 24-30.
[1] XIE Jinlong, HUANG Chong, WANG Xiaoxing. Distribution features of proved reserves of carbonate oil and gas pools in China[J]. Marine Origin Petroleum Geology, 2009, 14(2): 24-30.
[2] 马永生, 何登发, 蔡勋育, 等. 中国海相碳酸盐岩的分布及油气地质基础问题[J]. 岩石学报, 2017, 33(4): 1007-1020.
[2] MA Yongsheng, HE Dengfa, CAI Xunyu, et al. Distribution and fundamental science questions for petroleum geology of marine carbonate in China[J]. Acta Petrologica Sinica, 2017, 33(4): 1007-1020.
[3] 谢增业, 魏国齐, 李剑, 等. 中国海相碳酸盐岩大气田成藏特征与模式[J]. 石油学报, 2013, 34(S1): 29-40.
[3] XIE Zengye, WEI Guoqi, LI Jian, et al. Reservoir characteristics and accumulation modes of large carbonate gas fields in China[J]. Acta Petrolei Sinica, 2013, 34(S1): 29-40.
[4] 吕修祥, 金之钧. 碳酸盐岩油气田分布规律[J]. 石油学报, 2000, 21(3): 8-12.
[4] LYU Xiuxiang, JIN Zhijun. Distribution patterns of oil-gas fields in the carbonate rock[J]. Acta Petrolei Sinica, 2000, 21(3): 8-12.
[5] 魏国齐, 李君, 佘源琦, 等. 中国大型气田的分布规律及下一步勘探方向[J]. 天然气工业, 2018, 38(4): 12-25.
[5] WEI Guoqi, LI Jun, SHE Yuanqi, et al. Distribution laws of large gas fields and further exploration orientation and targets in China[J]. Natural Gas Industry, 2018, 38(4): 12-25.
[6] 马永生, 何治亮, 赵培荣, 等. 深层—超深层碳酸盐岩储层形成机理新进展[J]. 石油学报, 2019, 40(12): 1415-1425.
[6] MA Yongsheng, HE Zhiliang, ZHAO Peirong, et al. A new progress in formation mechanism of deep and ultra-deep carbonate reservoir[J]. Acta Petrolei Sinica, 2019, 40(12): 1415-1425.
[7] 沈安江, 陈娅娜, 蒙绍兴, 等. 中国海相碳酸盐岩储层研究进展及油气勘探意义[J]. 海相油气地质, 2019, 24(4): 1-14.
[7] SHEN Anjiang, CHEN Yana, MENG Shaoxing, et al. The research progress of marine carbonate reservoirs in China and its significance for oil and gas[J]. Marine Origin Petroleum Geology, 2019, 24(4): 1-14.
[8] 贾爱林, 闫海军. 不同类型典型碳酸盐岩气藏开发面临问题与对策[J]. 石油学报, 2014, 35(3): 519-527.
[8] JIA Ailin, YAN Haijun. Problems and countermeasures for various of typical carbonate gas reservoirs development[J]. Acta Petrolei Sinica, 2014, 35(3): 519-527.
[9] 贾爱林, 闫海军, 郭建林, 等. 不同类型碳酸盐岩气藏开发特征[J]. 石油学报, 2013, 34(5): 914-923.
[9] JIA Ailin, YAN Haijun, GUO Jianlin, et al. Development characteristics for different types of carbonate gas reservoirs[J]. Acta Petrolei Sinica, 2013, 34(5): 914-923.
[10] 李阳, 康志江, 薛兆杰, 等. 中国碳酸盐岩油气藏开发理论与实践[J]. 石油勘探与开发, 2018, 45(4): 669-678.
[10] LI Yang, KANG Zhijiang, XUE Zhaojie, et al. Theories and practices of carbonate reservoirs development in China[J]. Petroleum Exploration and Development, 2018, 45(4): 669-678.
[11] 王永辉, 李永平, 程兴生, 等. 高温深层碳酸盐岩储层酸化压裂改造技术[J]. 石油学报, 2012, 33(22): 166-173.
[11] WANG Yonghui, LI Yongping, CHENG Xingsheng, et al. A new acid fracturing technique for carbonate reservoirs with high-temperature and deep layer[J]. Acta Petrolei Sinica, 2012, 33(22): 166-173.
[12] 朱雯钊, 苗娟, 陈思韵, 等. 深层碳酸盐岩大斜度井及水平井纤维暂堵转向分段压裂参数优化[J]. 特种油气藏, 2022, 29(3): 170-174.
[12] ZHU Wenzhao, MIAO Juan, CHEN Siyun, et al. Optimization of fracture parameters for staged fracturing with temporary fiber plugging and diversion in highly deviated wells and horizontal wells in deep carbonate reservoirs[J]. Special Oil & Gas Reservoirs, 2022, 29(3): 170-174.
[13] 孙林, 杨万有, 黄波, 等. 海上油田水力冲击压裂酸化技术研究与试验[J]. 石油机械, 2021, 49(6): 36-42.
[13] SUN Lin, YANG Wanyou, HUANG Bo, et al. Research and experiment of hydraulic impact fracturing acidification technology in offshore oil field[J]. China Petroleum Machinery, 2021, 49(6): 36-42.
[14] 徐兵威, 李克智, 秦玉英, 等. 大牛地气田转向酸酸压技术研究与应用[J]. 断块油气田, 2013, 20(2): 232-235.
[14] XU Bingwei, LI Kezhi, QIN Yuying, et al. Study and application of acid fracturing technology with diversion acid in Daniudi Gas Field[J]. Fault-Block Oil & Gas Field, 2013, 20(2): 232-235.
[15] 林鑫, 张士诚, 李小刚, 等. 聚合物酸液稠化剂对储集层的伤害[J] .新疆石油地质, 2016, 37(4): 460-463.
[15] LIN Xin, ZHANG Shicheng, LI Xiaogang, et al. Damage of polymer acid viscosifier to reservoirs[J]. Petrochemical Industry Application, 2016, 37(4): 460-463.
[16] MIRKHOSHHAL S M, MAHANI H, AYATOLLAHI S, et al. Pore-scale insights into sludge formation damage during acid stimulation and its underlying mechanisms[J]. Journal of Petroleum Science and Engineering, 2021, 196(1): 1-14.
[17] 何勤功. 高分子聚合物在储集层孔隙介质中的滞留机理[J]. 石油勘探与开发, 1981, 8(3): 49-59.
[17] HE Qingong. Retention mechanism of polymer in reservoir pore media[J]. Petroleum Exploration and Development, 1981, 8(3): 49-59.
[18] 李耕. 胶凝酸稠化剂在方解石中的滞留伤害研究[D]. 西南石油大学, 2017.
[18] LI Geng. Study on retention damage of gelling acid thickener in calcite[D]. Chengdu: Southwest Petroleum University, 2017.
[19] 储铭汇. 致密碳酸盐岩储层复合缝网酸压技术研究及矿场实践——以大牛地气田下古生界马五5碳酸盐岩储层为例[J]. 石油钻采工艺, 2017, 39(2): 237-243.
[19] CHU Minghui. Study on composite fracture-network acid fracturing technology for tight carbonate reservoirs and its field application: A case study on Mawu5 carbonate reservoir of Lower Paleozoic in Daniudi Gasfield[J]. Oil Drilling & Production Technology, 2017, 39(2): 237-243.
[20] HOU B, WANG Y, CAO X, et al. Surfactant-induced wettability alteration of oil-wet sandstone surface: Mechanisms and its effect on oil recovery[J]. Journal of Surfactants & Detergents, 2016, 19(2):315-324.
[21] 张瑞, 胡冰艳, 樊开赟, 等. 阳离子型Gemini表面活性剂对固体表面润湿反转行为的研究[J]. 油田化学, 2011, 28(2): 152-157.
[21] ZHANG Rui, HU Bingyan, FAN Kaiyun. The study of the reversal wettability on lipophilic/hydrophilic surface of gemini surfactant[J]. Oilfield Chemistry, 2011, 28(2): 152-157.
[22] BERA A, KUMAR T, OJHA K, et al. Adsorption of surfactants on sand surface in enhanced oil recovery: Isotherms, kinetics and thermodynamic studies[J]. Applied Surface Science, 2013, 284(11): 87-99.
[23] MOSLEMIZADEH A, DEHKORDI A F, BARNAJI M J, et al. Novel bio-based surfactant for chemical enhanced oil recovery in montmorillonite rich reservoirs: Adsorption behavior, interaction impact, and oil recovery studies[J]. Chemical Engineering Research and Design, 2016, 109: 18-31.
[24] 李应成, 鲍新宁, 张卫东, 等. 国内外强化采油用表面活性剂研究进展[J]. 精细化工, 2020, 1(3):1-12.
[24] LI Yingcheng, BAO Xinning, ZHANG Weidong, et al. Research progress of surfactants for enhanced oil recovery at home and abroad[J]. Fine Chemicals, 2020, 1(3):1-12.
[25] 刘合, 张劲, 张士诚. 多功能清洁酸性压裂液的设计[J]. 石油学报, 2009, 30(3): 427-429.
[25] LIU He, ZHANG Jin, ZHANG Shicheng. Property and design of clean acid fracturing fluid with multi-function[J]. Acta Petrolei Sinica, 2009, 30(3): 427-429.
[26] ZHANG W, MAO J, YANG X, et al. Development of a stimuli-responsive gemini zwitterionic viscoelastic surfactant for self-diverting acid[J]. Journal of Surfactants and Detergents, 2019, (22): 535-547.
[27] 李爱山, 杨彪, 鞠玉芹, 等. 黏弹性表面活性剂压裂液流变性研究[J]. 石油勘探与开发, 2007, 34(1): 89-92.
[27] LI Aishan, YANG Biao, JU Yuqin, et al. Viscoelastic surfactant fracturing fluid rheology[J]. Petroleum Exploration and Development, 2007, 34(1): 89-92.
[28] HULL K L, SAYED M, AL-MUNTASHERI G A. Recent advances in viscoelastic surfactants for improved production from hydrocarbon reservoirs[J]. SPE Journal, 2015, 21(4): 946-980.
[29] AL-GHAMDI A H, MAHMOUD M A, WANG G, et al. Acid diversion by use of viscoelastic surfactants: The effects of flow rate and initial permeability contrast[J]. SPE Journal, 2014, 19(6): 1203-1216.
[30] DURáN-áLVAREZ A, MALDONADO-DOMíNGUEZ M, GONZáLEZ-ANTONIO O, et al. Experimental-theoretical approach to the adsorption mechanisms for anionic, cationic, and zwitterionic surfactants at the calcite-water interface[J]. Langmuir, 2016, 32(11): 2608-2616.
文章导航

/