方法理论

基于分子模拟的页岩油赋存状态影响因素研究

  • 宋书伶 ,
  • 杨二龙 ,
  • 沙明宇
展开
  • 1.中国石化石油机械股份有限公司三机分公司,湖北 武汉 430040
    2.东北石油大学提高油气采收率教育部重点实验室,黑龙江 大庆 163318
宋书伶(1996—),女,硕士,助理工程师,从事油气田开发理论与技术研究。地址:湖北省武汉市东西湖区中国石化石油机械股份有限公司三机分公司,邮政编码:430040。E-mail:1664788730@qq.com

收稿日期: 2021-11-13

  网络出版日期: 2023-01-30

基金资助

国家自然科学基金“致密油储层孔隙结构跨尺度多源融合及重构”(51774090)

Influencing factors of occurrence state of shale oil based on molecular simulation

  • shuling SONG ,
  • Erlong YANG ,
  • Mingyu SHA
Expand
  • 1. San Ji Branch of Sinopec Oilfield Equipment Corporation, Wuhan, Hubei 430040, China
    2. Key Laboratory of the Ministry of Education Northeast Petroleum University for Improving Oil and Gas Recovery, Daqing, Heilongjiang 163318, China

Received date: 2021-11-13

  Online published: 2023-01-30

摘要

页岩油的可动用性直接影响有效勘探开发程度,而页岩油的可流动性与其赋存状态密切相关,因此,研究页岩油的赋存状态对其开发有重要作用。利用石墨烯和石英建立孔隙模型,采用分子模拟方法研究正辛烷及其混合物在纳米孔隙中的赋存状态,并分析了孔隙尺寸、温度、压力、页岩油组分、壁面润湿性和壁面组分对赋存状态的影响。结果表明:①页岩油在孔隙中呈多层吸附且关于孔隙中心对称,吸附层厚度均为0.4~0.5 nm;②储层孔隙尺寸越大、温度越高、压力越低、分子组分越轻、极性越弱、壁面润湿度越高越不利于页岩油分子在壁面吸附;③在组合壁面中,由于石墨烯壁面的影响随石英壁面润湿度增加页岩油分子吸附量越多,此外正己酸和环己烷也出现吸附转移现象。

本文引用格式

宋书伶 , 杨二龙 , 沙明宇 . 基于分子模拟的页岩油赋存状态影响因素研究[J]. 油气藏评价与开发, 2023 , 13(1) : 31 -38 . DOI: 10.13809/j.cnki.cn32-1825/te.2023.01.004

Abstract

The availability of shale oil directly affects the degree of effective exploration and development, and the mobility of shale oil is closely related to its occurrence state. Therefore, studying the occurrence state of shale oil plays an important role in its development. The pore model is established by graphene and quartz, and the occurrence state of n-octane and its mixture in nanopores is studied by molecular simulation method. The effects of pore size, temperature, pressure, shale oil composition, wall wettability and wall composition on the occurrence state are analyzed. The results show that: ①shale oil is multi-layer adsorbed in the pores and symmetrical about the pore center, and the thickness of the adsorption layer is 0.4~0.5 nm; ②The larger the pore size of the reservoir, the higher the temperature, the lower the pressure, the lighter the molecular component, the weaker the polarity, and the higher the wall wettability are, the more unfavorable the adsorption of oil molecules on the wall is;③ In the combined wall, due to the influence of graphene wall, the adsorption amount of shale oil molecules increases with the increase of quartz wall wetting humidity. In addition, the adsorption transfer phenomenon of n-hexanoic acid and cyclohexane also occurs.

参考文献

[1] 孙焕泉, 蔡勋育, 周德华, 等. 中国石化页岩油勘探实践与展望[J]. 中国石油勘探, 2019, 24(5): 569-575.
[1] SUN Huanquan, CAI Xunyu, ZHOU Dehua, et al. Practice and prospect of Sinopec shale oil exploration[J]. China Petroleum Exploration, 2019, 24(5): 569-575.
[2] 袁凌荣, 孔令辉, 商建霞, 等. 乌石凹陷东区流沙港组成岩作用及次生孔隙发育特征[J]. 石油地质与工程, 2020, 34(6): 33-37.
[2] YUAN Lingrong, KONG Linghui, SHANG Jianxia, et al. Diagenesis and secondary pore development characteristics of Liushagang formation in the east of Wushi sag[J]. Petroleum Geology & Engineering, 2020, 34(6): 33-37.
[3] 杨雷, 金之钧. 全球页岩油发展及展望[J]. 中国石油勘探, 2019, 24(5): 553-559.
[3] YANG Lei, JIN Zhijun. Global shale oil development and prospects[J]. China Petroleum Exploration, 2019, 24(5): 553- 559.
[4] 孙龙德. GL页岩油(代序)[J]. 大庆石油地质与开发, 2020, 39(3): 1-7.
[4] SUN Longde. Gulong shale oil(Preface)[J]. Petroleum Geology & Oilfield Development in Daqing, 2020, 39(3): 1-7.
[5] 孙龙德, 刘合, 何文渊, 等. 大庆GL页岩油重大科学问题与研究路径探析[J]. 石油勘探与开发, 2021, 48(3): 453-463.
[5] SUN Longde, LIU He, HE Wenyuan, et al. An analysis of major scientific problems and research paths of Gulong shale oil in Daqing Oilfield, NE China[J]. Petroleum Exploration and Development, 2021, 48(3): 453-463.
[6] 郑建东, 王春燕, 章华兵, 等. 松辽盆地古龙页岩油储层七性参数和富集层测井评价方法[J]. 大庆石油地质与开发, 2021, 40(5): 87-97.
[6] ZHENG Jiandong, WANG Chunyan, ZHANG Huabing, et al. Logging evaluating method of seven property parameters and enriched layers for Gulong shale oil reservoir in Songliao Basin[J]. Daqing Petroleum Geology and Development, 2021, 40(5): 87-97.
[7] 田善思. 页岩储层孔隙微观特征及页岩油赋存与可动性评价[D]. 青岛: 中国石油大学(华东), 2019.
[7] TIAN Shansi. Micro-pore characteristics of shale reservoirs and evaluation of shale oil occurrence and movability[D]. Qingdao: China University of Petroleum(East China), 2019.
[8] 刘娜娜. 南川地区龙马溪组优质页岩段微观孔隙结构特征[J]. 石油地质与工程, 2021, 35(4): 21-25.
[8] LIU Nana. Micro pore structure characteristics of high quality shale section of Longmaxi formation in Nanchuan area[J]. Petroleum Geology & Engineering, 2021, 35(4): 21-25.
[9] 程垒明. 吉木萨尔凹陷页岩油水平井地质工程一体化三维压裂设计探索[J]. 石油地质与工程, 2021, 35(2): 88-92.
[9] CHENG Leiming. Exploration of geological engineering integrated 3D fracturing design for horizontal wells in Jimsar shale oil reservoirs[J]. Petroleum Geology & Engineering, 2021, 35(2): 88-92.
[10] 黄帅博. 焉耆盆地四十里城地区储层特征及孔隙演化[J]. 石油地质与工程, 2020, 34(2): 28-32.
[10] HUANG Shuaibo. Reservoir characteristics and pore evolution in Sishilicheng area of Yanqi basin[J]. Petroleum Geology & Engineering, 2020, 34(2): 28-32.
[11] 柳波, 吕延防, 冉清昌, 等. 松辽盆地北部青山口组页岩油形成地质条件及勘探潜力[J]. 石油与天然气地质, 2014, 35(2): 280-285.
[11] LIU Bo, LU Yanfang, RAN Qingchang, et al. Geological conditions and exploration potential of shale oil in Qingshankou Formation, Northern Songliao Basin[J]. Oil & Gas Geology, 2014, 35(2): 280-285.
[12] 李向哲. 页岩气在变截面纳米孔道中的流动机理研究[D]. 合肥: 中国科学技术大学, 2018.
[12] LI Xiangzhe. Lattice Boltzmann simulations about shale gas flow in contracting nanochannels[D]. Hefei: University of Science and Technology of China, 2018.
[13] WANG S, JAVADPOUR F, FENG Q H. Molecular dynamics simulations of oil transport through inorganic nanopores in shale[J]. Fuel, 2016, 171: 74-86.
[14] WANG S, FENG Q H, JAVADPOUR F, et al. Oil adsorption in shale nanopores and its effect on recoverable oil-in-place[J]. International Journal of Coal Geology, 2015, 147: 9-24.
[15] 吴春正, 薛海涛, 卢双舫, 等. 页岩油在纳米级狭缝中吸附特征的分子动力学模拟[J]. 地质科技情报, 2018, 37(3): 202-209.
[15] WU Chunzheng, XUE Haitao, LU Shuangfang, et al. Molecular dynamics simulation of adsorption characteristics of shale oil in nanoscale slits[J]. Bulletin Geological Science and Technology, 2018, 37(3): 202-209.
[16] 郭蒙蒙. 致密油吸附和流动特征的分子模拟研究[D]. 青岛: 中国石油大学(华东), 2018.
[16] GUO Mengmeng. A molecular simulation study on adsorption and flow characteristics of tight oil[D]. Qingdao: China University of Petroleum(East China), 2018.
[17] TIAN S S, XUE H T, LU S F, et al. Molecular simulation of oil mixture adsorption character in shale system[J]. Journal of Nanoscience and Nanotechnology, 2017, 17(9): 6198-6209.
[18] 卢双舫, 薛海涛, 王民, 等. 页岩油评价中的若干关键问题及研究趋势[J]. 石油学报, 2016, 37(10): 1309-1322.
[18] LU Shuangfang, XUE Haitao, WANG Min, et al. Several key issues and research trends in evaluation of shale oil[J]. Acta Petrolei Sinica, 2016, 37(10): 1309-1322.
[19] AMBROSER R J, HARTMAN R C, DIAZ-CAMPOS M, et al. Shale gas-in-place calculations part Ⅰ: New pore-scale considerations[J]. SPE Journal, 2012, 17(1): 219-229.
[20] MOSHER K, HE J J, LIU Y Y, et al. Molecular simulation of methane adsorption in micro-and mesoporous carbons with applications to coal and gas shale systems[J]. International Journal of Coal Geology, 2013, 109: 36-44.
[21] 焦红岩, 董明哲, 刘仲伟, 等. 水环境下甲烷在不同润湿性石英表面吸附行为的分子动力学模拟[J]. 中国石油大学学报(自然科学版), 2014, 38(5): 178-183.
[21] JIAO Hongyan, DONG Mingzhe, LIU Zhongwei, et al. Molecular dynamics simulation of methane adsorption with presence of water on different wettability quartz surface[J]. Journal of China University of Petroleum(Edition of Natural Science), 2014, 38(5): 178-183.
[22] PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117(1): 1-19.
[23] 王森. 页岩油微尺度流动机理研究[D]. 青岛: 中国石油大学(华东), 2016.
[23] WANG Sen. Microscale flow mechanisms of oil in shale[D]. Qingdao: China University of Petroleum(East China), 2016.
[24] National Institute of Standards and Technology. Thermophysical properties of fluid systems[EB/OL].(2011-09-28) [2021-10-08]. http://webbook.nist.gov/chemistry/fluid/.
[25] DO D D, DO H D. Adsorption of flexible n-alkane on graphitized thermal carbon black: analysis of adsorption isotherm by means of GCMC simulation[J]. Chemical Engineering Science, 2005, 60(7): 1977-1986.
[26] WANG M, YANG J X, WANG Z W, et al. Nanometer-scale pore characteristics of lacustrine shale, Songliao Basin, NE China[J]. PLoS ONE, 2015, 10(8): e0135252.
[27] 王民, 马睿, 李进步, 等. 济阳坳陷古近系沙河街组湖相页岩油赋存机理[J]. 石油勘探与开发, 2019, 46(4): 789-802.
[27] WANG Min, MA Rui, LI Jinbu, et al. Occurrence mechanism of lacustrine shale oil in the Paleogene Shahejie Formation of Jiyang Depression, Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 2019, 46(4): 789-802.
[28] CUI X N, YANG E L, SONG K P, et al. Phase equilibrium of hydrocarbons confined in nanopores from a modified Peng-Robinson equation of state[C]// Paper SPE-191547-MS presented at the SPE Annual Technical Conference and Exhibition, Dallas, Texas, USA, September 2018.
[29] YANG Y F, Liu J, Yao J, et al. Adsorption behaviors of shale oil in kerogen slit by molecular simulation[J]. Chemical Engineering Journal, 2020, 387(C): DOI: https://doi.org/10.1016/j.cej.2020.124054.
[30] FREEMAN C M, MORIDIS G J, MICHAEL G E, et al. Measurement, modeling, and diagnostics of flowing gas composition changes in shale gas wells[C]// Paper SPE-153391-MS presented at the SPE Latin America and Caribbean Petroleum Engineering Conference, Mexico City, Mexico, April 2012.
[31] TINNI A, SONDERGELD C H, RAI C S. Hydrocarbon storage mechanism in shale reservoirs and impact on hydrocarbon production[C]// Paper URTEC-2697659-MS presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference, Austin, Texas, USA, July 2017.
文章导航

/