工程工艺

考虑隔层影响的页岩油储层可压性评价方法

  • 刘叶轩 ,
  • 刘向君 ,
  • 丁乙 ,
  • 周鑫 ,
  • 梁利喜
展开
  • 西南石油大学油气藏地质及开发工程国家重点实验室,四川 成都 610500
刘叶轩(1996—),男,在读硕士研究生,主要从事石油工程岩石力学方面的研究。地址:四川省成都市新都区新都大道8号,邮政编码:610500。E-mail:18280313301@163.com

收稿日期: 2022-01-14

  网络出版日期: 2023-01-30

基金资助

国家自然科学基金项目“富有机质硬脆性页岩水化机理基础研究”(41772151)

Evaluation method of fracability of shale oil reservoir considering influence of interlayer

  • Yexuan LIU ,
  • Xiangjun LIU ,
  • Yi DING ,
  • Xin ZHOU ,
  • Lixi LIANG
Expand
  • State Key Laboratory of Oil and Gas Reservoir Geology and Development Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China

Received date: 2022-01-14

  Online published: 2023-01-30

摘要

页岩油储层物性极差,必须通过体积压裂改造形成网状裂缝系统才能实现经济有效开发。而页岩油储层上下均有渗透性更差的隔层,掌握有隔层情况下的储层裂缝扩展规律是页岩油成功压裂的关键。借助岩石破裂损伤分析系统数值模拟软件RFPA,开展了储隔层压裂缝扩展影响因素研究。在考虑了地层非均质的前提下,综合考虑储隔层弹性模量、储隔层泊松比、储隔层单轴抗压强度、储隔层抗拉强度、水平应力差异以及层间应力差这几种影响因素,采用层次分析法进行了页岩油储层可压性评价。结果表明,储隔层的弹性模量和水平地应力差以及储层的单轴抗压强度都与裂缝扩展程度呈负相关性,随着这些参数的增加,裂缝越难扩展。而储层的压拉比和储隔层层间应力差与裂缝扩展程度呈正相关性,即抗拉强度和层间应力差的增大将会有利于加大裂缝扩展的规模,并且较大的层间应力差还会使裂缝穿过隔层,在隔层继续发展;采用模糊数学中的层次分析法建立可压性数学模型,应用于工区已压裂井,预测结果与实验微地震监测结果相符,研究成果可为页岩油压裂改造提供参考。

本文引用格式

刘叶轩 , 刘向君 , 丁乙 , 周鑫 , 梁利喜 . 考虑隔层影响的页岩油储层可压性评价方法[J]. 油气藏评价与开发, 2023 , 13(1) : 74 -82 . DOI: 10.13809/j.cnki.cn32-1825/te.2023.01.008

Abstract

The physical properties of shale oil reservoir are extremely poor, so it is necessary to form a network fracture system through volume fracturing to realize economic and effective development. However, there are lower permeability interlayers both in the top and bottom of shale oil reservoirs, so to master the fracture propagation law of reservoir with interlayers is the key for the successful fracturing of shale oil. With the help of the numerical simulation software, RFPA, of the rock fracture damage analysis system, the influencing factors of fracture propagation in the reservoir interlayers are studied. On the premise of considering the heterogeneity of strata, and by the comprehensively consideration of the elastic modulus, Poisson's ratio, uniaxial compressive strength, tensile strength, horizontal stress difference and interlayer stress difference of the reservoir, the fracability of shale oil reservoir is evaluated by the analytic hierarchy process. The results show that the elastic modulus of the reservoir interlayer, the difference of horizontal in-situ stress and the uniaxial compressive strength of the reservoir are negatively correlated with the degree of crack propagation. As these parameters increase, the cracks are more difficult to expand. However, there is a positive correlation between the ratio of tension and compression of reservoir and the stress difference between layers of reservoir and the degree of fracture propagation, that is, the increase of tensile strength and interlayer stress difference will help to increase the scale of fracture propagation, and the larger interlayer stress difference will make the fractures pass through the interlayers and continue to develop in the interlayer. Meanwhile, the mathematical model of the fracability is established by the analytic hierarchy process in fuzzy mathematics, and applied to the fractured wells in the work area. The predicted results are consistent with the experimental microseismic monitoring results, and the research results can provide reference for shale oil fracturing reform.

参考文献

[1] EIA. Annual energy outlook 2017: With projections to 2050[R]. Washington D.C.: U.S. Energy Information Administration, 2017.
[2] 黎茂稳, 孙川翔, 张海霞. 我国陆相页岩油前景可期[J]. 中国石油石化, 2017(20): 38-39.
[2] LI Maowen, SUN Chuanxiang, ZHANG Haixia. Prospect of continental shale oil in China[J]. Petrochemicals of China, 2017(20): 38-39.
[3] CHONG K K, GRIESSR W V, PASSMAN A, et al. A completions guide book to shale-play development: A review of successful approaches towards shale-play timulation in the last to wo decades[C]// Paper SPE-133874-MS presented at the Canadian Unconventional Resources and International Petroleum Conference, Calgary, Alberta, Canada, October 2010.
[4] 郭长永, 李雅飞, 于会永, 等. 砂砾岩储层重复射孔工艺优化[J]. 石油机械, 2020, 48(9): 51-58.
[4] GUO Changyong, LI Yafei, YU Huiyong, et al. Optimization of repeated perforation technology for glutenite reservoirs[J]. China Petroleum Machinery, 2020, 48(9): 51-58.
[5] MIKE M, MILT E. Fracability index-more than just calculating rock properties[C]// Paper SPE-159755-MS presented at the SPE Annual Conference and Exhibition, San Antonio, Texas, October 2012.
[6] 刘海龙, 张磊, 谢涛, 等. 脆性泥页岩椭圆形井眼坍塌规律分析[J]. 石油机械, 2020, 48(5): 28-33.
[6] LIU Hailong, ZHANG Lei, XIE Tao, et al. Analysis of the collapse law of elliptical brittle mud shale boreholes[J]. China Petroleum Machinery, 2020, 48(5): 28-33.
[7] 谢建勇, 袁珍珠, 代兵, 等. 页岩油储层层理缝渗吸机制和渗吸模式[J]. 特种油气藏, 2021, 28(5): 161-167.
[7] XIE Jianyong, YUAN Zhenzhu, DAI Bing, et al. Imbibition mechanism and model of bedding fractures in shale oil reservoir[J]. Special Oil & Gas Reservoirs, 2021, 28(5): 161-167.
[8] 范玉光, 田中兰, 马喜伟, 等. 页岩气水平井井眼清洁评价研究[J]. 石油机械, 2021, 49(3): 9-14.
[8] FAN Yuguang, TIAN Zhonglan, MA Xiwei, et al. Study on hole cleaning evaluation for shale gas horizontal wells[J]. China Petroleum Machinery, 2021, 49(3): 9-14.
[9] ENDERLIN M B, ALSLEBEN H, BEYER J. Predicting fracability in shale reservoirs[C]// Paper presented at the 2011 AAPG Hedberg Conference, Austin, Texas, December 2010.
[10] 陈朝伟, 房超, 朱勇, 等. 四川页岩气井套管变形特征及受力模式[J]. 石油机械, 2020, 48(2): 126-134.
[10] CHEN Zhaowei, FANG Chao, ZHU Yong, et al. Deformation characteristics and stress modes of casings for shale gas wells in sichuan[J]. China Petroleum Machinery, 2020, 48(2): 126-134.
[11] 宁凡, 邹妞妞, 张大权, 等. 黔北地区下寒武统牛蹄塘组页岩特征研究[J]. 特种油气藏, 2020, 27(1): 62-67.
[11] NING Fan, ZOU Niuniu, ZHANG Daquan, et al. Shale characterization of the lower cambrian niutitang formation in northern guizhou[J]. Special Oil & Gas Reservoirs, 2020, 27(1): 62-67.
[12] 刁海燕. 泥页岩储层岩石力学特性及脆性评价[J]. 岩石学报, 2013, 29 (9): 3300-3306.
[12] DIAO Haiyan. Rock mechanical properties and brittleness evaluation of shale reservoir[J]. Journal of rock, 2013, 29(9): 3300-3306.
[13] 袁俊亮, 邓金根, 张定宇, 等. 页岩气储层可压裂性评价技术[J]. 石油学报, 2013, 34(3): 523-527.
[13] YUAN Junliang, DENG Jingen, ZHANG Dingyu, et al. Fracability evaluation of shale-gas reservoir[J]. Acta Petrolei Sinica, 2013, 34(3): 523-527.
[14] SU K, ONAISI A, GARNIER A. A comprehensive methodology of e-valuation of the fracability of a shale gas play[C]// Paper presented at the Unconventional Resources Technology Conference, Denver, Colorado, August 2014.
[15] 孙建孟, 韩志磊, 秦瑞宝, 等. 致密气储层可压裂性测井评价方法[J]. 石油学报, 2015, 36(1): 74-80.
[15] SUN Jianmeng, HAN Zhilei, QIN Ruibao, et al. Log evaluation method of fracturing performance in tight gas reservoir[J]. Acta Petrolei Sinica, 2015, 36(1): 74-80.
[16] 赵金洲, 许文俊, 李勇明, 等. 页岩气可压性评价新方法[J]. 天然气地球科学, 2015, 26 (6): 1672-1172.
[16] ZHAO Jinzhou, XU Wenjun, LI Yongming, et al. A new method for fracability evaluation of shale-gas reservoirs[J]. Natural gas geoscience, 2015, 26(6): 1672-1172.
[17] 杨宏伟, 李军, 柳贡慧, 等. 基于测井数据的页岩可压性定量评价[J]. 断块油气田, 2017, 24(3): 382-386.
[17] YANG Hongwei, LI Jun, LIU Gonghui, et al. Quantitative evaluation of shale fracability based on logging data[J]. Fault-Block Oil & Gas Field, 2017, 24(3): 382-386.
[18] 孙翰文, 费繁旭, 高阳, 等, 吉木萨尔陆相页岩水平井压裂后产量影响因素分析[J]. 特种油气藏, 2020, 27(2): 108-114.
[18] SUN Hanwen, FEI Fanxu, GAO Yang, et al. Production sensitivity analysis of fractured horizontal wells in jimusar continental shale[J]. Special Oil & Gas Reservoirs, 2020, 27(2): 108-114.
[19] 陈江湛, 曹函, 孙平贺. 湘西北牛蹄塘组页岩可压裂性评价[J]. 地学前缘, 2017, 24 (6): 390-398.
[19] CHEN Jiangzhan, CAO Han, SUN Pinghe. Fracability evaluation of shale in the Niutitang Formation in northwestern Hunan[J]. Earth Science Frontiers, 2017, 24(6): 390-398.
[20] 万远飞, 秦启荣, 范宇, 等. 长宁背斜龙马溪组页岩裂缝发育特征及期次解析[J]. 特种油气藏, 2021, 28(1): 59-66.
[20] WAN Yuanfei, QIN Qirong, FAN Yu, et al. Development characteristics of shale fractures in Longmaxi Formation of Changning anticline and the stage analysis[J]. Special Oil & Gas Reservoirs, 2021, 28(1): 59-66.
[21] 范明涛, 李社坤, 李军, 等. 深层页岩气水泥环界面密封失效机理研究[J]. 石油机械, 2021, 49(1): 53-57.
[21] FAN Mingtao, LI Shekun, LI Jun, et al. Study on the sealing failure mechanism of cement sheath interface in deep shale gas wells[J]. China Petroleum Machinery, 2021, 49(1): 53-57.
[22] 徐春碧, 肖晖, 杨德普, 等. 利用综合甜点对YDN地区龙马溪组页岩储层进行可压性评价[J]. 重庆科技学院学报: 自然科学版, 2017, 19(6): 1-4.
[22] XU Chunbi, XIAO Hui, YANG Depu, et al. Compressibility evaluation of Longmaxi shale reservoir in YDN area based on comprehensive dessert index[J]. Journal of Chongqing University of Science and Technology, 2017, 19(6): 1-4.
[23] 信诗琪. 致密砂岩储层可压性评价及应用[D]. 北京: 中国石油大学, 2018.
[23] XIN Shiqi. Fracability evaluation and tight sandstone and its application[D]. Beijing: China University of Petroleum, 2018.
[24] 王小军, 梁利喜, 赵龙, 等. 准噶尔盆地吉木萨尔凹陷芦草沟组含油页岩岩石力学特性及可压裂性评价[J]. 石油与天然气地质, 2019, 40(3): 661-668.
[24] WANG Xiaojun, LIANG Lixi, ZHAO Long, et al. Rock mechanics and fracability evaluation of the lucaogou formation Oil shales in Jimusar Sag, Junggar Basin[J]. Oil & Gas Geology, 2019, 40(3): 661-668.
[25] 董岩, 徐东升, 钱根葆, 等. 吉木萨尔页岩油“甜点”预测方法[J]. 特种油气藏, 2020, 27(3): 54-59.
[25] DONG Yan, XU Dongsheng, QIAN Genbao, et al. Shale oil “sweet-spot” prediction in Jimusar Sag[J]. Special Oil & Gas Reservoirs, 2020, 27(3): 54-59.
[26] 宋明水, 刘振, 张学才, 等. 基于改进层次熵分析法的致密砂岩储层可压性评价——以准噶尔盆地Z109井侏罗系储层为例[J]. 地质力学学报, 2019, 25(4): 509-517.
[26] SONG Mingshui, LIU Zhen, ZHANG Xuecai, et al. Fracability evaluation of tight sandstone reservoir based on improved entropy analytic hierarchy process:Taking the jurassic reservoirs of well Z109 in the junggar basin as an example[J]. Journal of geomechanics, 2019, 25(4): 509-517.
[27] 崔春兰, 董振国, 吴德山. 湖南保靖区块龙马溪组岩石力学特征及可压性评价[J]. 天然气地球科学, 2019, 30(5): 626-634.
[27] CUI Chunlan, DONG Zhenguo, WU Deshan. Rock mechanics study and fracability evaluation for Longmaxi Formation of Baojing block in Hunan Province[J]. Natural Gas Geoscience, 2019, 30(5): 626-634.
[28] 张冲, 夏富国, 夏玉琴, 等. 基于层次分析法的致密砂岩储层可压性综合评价[J]. 钻采工艺, 2021, 44(1): 61-64.
[28] ZHANG Chong, XIA Fuguo, XIA Yuqin, et al. Comprehensive evaluation of fracability of tight sandstone reservoirs based on analytic hierarchy process[J]. Drilling and Production Technology, 2021, 44(1): 61-64.
[29] 王汉青, 陈军斌, 张杰, 等. 基于权重分配的页岩气储层可压性评价新方法[J]. 石油钻探技术, 2016, 44(3): 88-94.
[29] WANG Hanqing, CHEN Junbin, ZHANG Jie, et al. A new method of fracability evaluation of shale gas reservoir based on weight allocation[J]. Petroleum Drilling Techniques, 2016, 44(3): 88-94.
[30] 侯冰, 陈勉, 王凯, 等. 页岩储层可压性评价关键指标体系[J]. 石油化工高等学校学报, 2014, 27(6): 42-49.
[30] HOU Bing, CHEN Mian, WANG Kai, et al. The key index system of fracability evaluation in gas shale reservoir[J]. Journal of Petrochemical Universities, 2014, 27(6): 42-49.
文章导航

/