方法理论

复杂断块油藏水驱储量控制程度评价新方法

  • 张杰 ,
  • 曾诚 ,
  • 李彦泽 ,
  • 李明林 ,
  • 骆洪梅 ,
  • 李晶华
展开
  • 中国石油冀东油田分公司,河北 唐山 063000
张杰(1982—),男,本科,高级工程师,现从事油田油藏开发研究工作。地址:河北省唐山市曹妃甸区汇丰路47号,邮政编码:063000。E-mail:zhangjiejd@petrochina.com.cn

收稿日期: 2023-02-09

  网络出版日期: 2023-04-26

基金资助

国家自然科学基金青年科学基金“考虑杂质混入、水盾阻隔及孔隙尺寸效应的CO2近混相驱油典型特征研究”(51704303)

New evaluation method of water flooding reserve control degree in complex fault block reservoirs

  • Jie ZHANG ,
  • Cheng ZENG ,
  • Yanze LI ,
  • Minglin LI ,
  • Hongmei LUO ,
  • Jinghua LI
Expand
  • PetroChina Jidong Oilfield Company, Tangshan, Hebei 063000, China

Received date: 2023-02-09

  Online published: 2023-04-26

摘要

复杂断块油藏纵向上油层多,平面上油砂体发育面积小,平面非均质性强,难以构建规则井网均匀驱替,同时受储层各种封闭边界影响,水驱过程中易形成死油区,为了更加精准计算水驱储量控制程度,更好地评价油藏的井网合理性与完整性,找出井网调整和加密潜力,针对常规方法的不足,提出了更加适用的新方法,即网格储量法。通过提高平面上井网内储量控制面积的划分精度,结合储层地质条件及储层非均质差异,以注采井组为基本单元,逐层网格化井网控制地质储量,对网格化的地质储量进行分类统计,找出复杂边界造成的死油区,进而计算区块注采井网控制程度、水驱储量控制程度,最终得到井网调整加密潜力。将该方法应用在南堡101断块井网适应性评价中,找到了复杂边界造成的井网未控制未动用区域,通过加密调整取得较好的挖潜效果,证明该方法在复杂断块油藏水驱储量控制程度评价有较好的适应性,可以推广至其他复杂断块油藏。

本文引用格式

张杰 , 曾诚 , 李彦泽 , 李明林 , 骆洪梅 , 李晶华 . 复杂断块油藏水驱储量控制程度评价新方法[J]. 油气藏评价与开发, 2023 , 13(2) : 200 -205 . DOI: 10.13809/j.cnki.cn32-1825/te.2023.02.008

Abstract

There are many oil layers in the vertical direction of complex fault block reservoirs. The development area of oil sand bodies on the plane is small, and the plane heterogeneity is strong. It is difficult to construct a regular well pattern for uniform displacement. At the same time, due to the influence of various closed boundaries of reservoirs, bypassed oil area is easy to form in the process of water flooding. In order to calculate the control degree of water drive reserves more accurately, evaluate the rationality and integrity of reservoir well pattern better, and find the way to adjust the well pattern, a more suitable new method, namely grid reserve method, is proposed for the shortcomings of traditional methods. By improving the division accuracy of the reserve control area in the well pattern on the plane, combining the geological conditions and the heterogeneity difference of the reservoir, and taking the injection-production well group as the basic unit, the geological reserves are controlled by the well pattern gridded layer by layer. The grid geological reserves are classified and counted, and those bypassed oil areas are found out, and then the control degree of the injection-production well pattern and the control degree of the water drive reserves are calculated. Finally, the potential of well pattern adjustment and encryption is obtained. This method is applied to the adaptability evaluation of the well pattern in Nanpu-101 fault block, and the uncontrolled and unused area of well pattern caused by complex boundary is found. After well pattern infilling, better potential tapping effect is show in this area. It is proved that this method has good adaptability in the evaluation of water drive reserves control degree in complex fault block reservoirs, and can be extended to other complex fault block reservoirs.

参考文献

[1] 缪飞飞. 水驱储量控制程度计算方法综述及新方法研究[J]. 石油地质与工程, 2017, 31(4): 50-53.
[1] LIAO Feifei. Review and new method research on calculation method of water drive reserve control degree[J]. Petroleum Geology and Engineering, 2017, 31(4): 50-53.
[2] 周英芳, 刘志军, 茆春锦, 等. 多层油藏水驱驱替效率计算新方法[J]. 特种油气藏, 2008, 15(3): 72-75.
[2] ZHOU Yingfang, LIU Zhijun, MAO Chunjin, et al. A new calculation method of water displacement efficiency for layered reservoir[J]. Special Oil & Gas Reservoirs, 2008, 15(3): 72-75.
[3] 尹晓喆, 王佳旭, 吴琼, 等. 多层砂岩油田水驱控制程度综合评价方法[J]. 大庆石油地质与开发, 2015, 34(5): 64-67.
[3] YIN Xiaozhe, WANG Jiaxu, WU Qiong, et al. Comprehensive evaluating method of the water-flooding controlled degree for the multilayered sandstone oilfield[J]. Petroleum Geology & Oilfield Development in Daqing, 2015, 34(5): 64-67.
[4] 闫正和, 石军太, 秦峰, 等. 水驱气藏动态储量和水侵量计算新方法[J]. 中国海上油气, 2021, 33(1): 93-103.
[4] YAN Zhenghe, SHI Juntai, QIN Feng, et al. A new method for calculating dynamic reserves and water influx of water drive gas reservoirs[J]. China Offshore Oil and Gas, 2021, 33(1): 93-103.
[5] 孙洪志, 刘吉余. 储层综合定量评价方法研究[J]. 大庆石油地质与开发, 2004, 23(6): 8-11.
[5] SUN Hongzhi, LIU Jiyu. Research on comprehensive and quantitative reservoir evaluation[J]. Petroleum Geology & Oilfield Development in Daqing, 2004, 23(6): 8-11.
[6] 杨昱杰, 曲艳玲, 刘蕊. 水驱砂岩油田小层注采关系分析方法和应用效果[J]. 科技导报, 2008, 26(7): 30-33.
[6] YANG Yujie, QU Yanling, LIU Rui. Relationship between production and injection in sub-divided oil layer of water driving sandstone oilfield[J]. Science & Technology Review, 2008, 26(7): 30-33.
[7] 韩大框, 万仁溥. 多层砂岩油藏开发模式[M]. 北京: 石油工业出版社, 1999.
[7] HAN Dakuang, WAN Renpu. Development mode of multilayer sandstone reservoir[M]. Beijing: Petroleum Industry Press, 1999.
[8] 方凌云, 万新德. 砂岩油藏注水开发动态分析[M]. 北京: 石油工业出版社, 1998.
[8] FANG Lingyun, WAN Xinde. Dynamic analysis of water injection development in sandstone reservoir[M]. Beijing: Petroleum Industry Press, 1998.
[9] 黄炳光, 刘蜀知. 实用油藏工程与动态分析方法[M]. 北京: 石油工业出版社, 1998.
[9] HUANG Bingguang, LIU Shuzhi. Practical reservoir engineering and dynamic analysis method[M]. Beijing: Petroleum Industry Press, 1998.
[10] 于德水. 基于相变的井网水驱控制程度分析—以萨尔图中区西部二、三类油层为例[J]. 断块油气田, 2014, 21(1): 74-78.
[10] YU Deshui. Analysis on water flooding control degree based on phase transition: Taking type Ⅱ and type Ⅲ oil layers on the west section of central Saertu Oilfield as an example[J]. Fault-Block Oil and Gas Field, 2014, 21(1): 74-78.
[11] 裴占松. 对不同井网密度下砂体控制程度的研究[J]. 大庆石油地质与开发, 2010, 29(1): 47-50.
[11] PEI Zhansong. Study on the controlled degree of sandbodies at different well-spacing densities[J]. Petroleum Geology & Oilfield Development in Daqing, 2010, 29(1): 47-50.
[12] SY/T6219—1996, 油田开发水平分级[S]. 北京: 石油工业出版社, 1996.
[12] SY/T 6219—1996, Oilfield development level classification[S]. Beijing: Petroleum Industry Press, 1996.
[13] 郭军辉. 水驱多层砂岩油田注采关系定量评价方法研究[J]. 石油天然气学报, 2012, 34(7): 132-135.
[13] GUO Junhui. Study on quantitative evaluation method of injection-production relationship in water flooding multi-layer sandstone oilfield[J]. Journal of Oil and Gas Technology, 2012, 34(7): 132-135.
[14] 汪立君, 陈新军. 储层非均质性对剩余油分布的影响[J]. 地质科技情报, 2003, 22(2): 71-73.
[14] WANG Lijun, CHEN Xinjun. Influence of reservoir heterogeneity on the distribution of remaining oil[J]. Geological Science and Technology Information, 2003, 22(2): 71-73.
[15] 尹楠鑫, 李存贵, 张吉, 等. 鄂尔多斯盆地五里湾油藏长6段储层非均质性对剩余油分布的影响[J]. 复杂油气藏, 2015, 8(3): 44-49.
[15] YIN Nanxin, LI Cungui, ZHANG Ji, et al. Influence of reservoir heterogenetity on the distribution of remaining oil of Chang 6 layer in Wuliwan reservoir, Ordos Basin[J]. Complex Hydrocarbon Reservoirs, 2015, 8(3): 44-49.
[16] 封从军, 单启铜, 时维成, 等. 扶余油田泉四段储层非均质性及对剩余油分布的控制[J]. 中国石油大学学报(自然科学版), 2013, 37(1): 1-7.
[16] FENG Congjun, SHAN Qitong, SHI Weicheng, et al. Reservoirs heterogeneity and its control on remaining oil distribution of K1q4, Fuyu Oilfield[J]. Journal of China University of Petroleum(Edition of Natural Science), 2013, 37(1): 1-7.
[17] 安玉华, 康楠, 胡治华, 等. 基于注采模式的水驱油藏剩余油分布特征[J]. 石油地质与工程, 2022, 36(3): 74-77.
[17] AN Yuhua, KANG Nan, HU Zhihua, et al. Distribution characteristics of remaining oil in water drive reservoir based on injection-production model[J]. Petroleum Geology & Engineering, 2022, 36(3): 74-77.
[18] 鲍敬伟, 李丽, 叶继根, 等. 高含水复杂断块油田加密井井位智能优选方法及其应用[J]. 石油学报, 2017, 38(4): 444-452.
[18] BAO Jingwei, LI Li, YE Jigen, et al. Well location intelligent optimization method and its application for infill wells in high water cut complex fault-block oilfields[J]. Acta Petrolei Sinica, 2017, 38(4): 444-452.
[19] 王群一, 毕永斌, 修德艳, 等. 复杂断块特高含水油田储层及渗流规律研究[J]. 特种油气藏, 2013, 20(4): 70-73.
[19] WANG Qunyi, BI Yongbin, XIU Deyan, et al. Study on reservoir and seepage law of complex fault block ultra-high water cut oilfield[J]. Special Oil & Gas Reservoirs, 2013, 20(4): 70-73.
[20] 李军辉, 柳成志, 卢双舫, 等. 复杂断块储层非均质性研究——以辽河油田沈84—安12块Es33段为例[J]. 吉林大学学报(地球科学版), 2008, 38(5): 757-764.
[20] LI Junhui, LIU Chengzhi, LU Shuangfang, et al. Study of reservoir heterogeneity of intricate fault-block: A case study of Es33 formation of Shen84-An12 Block in Liaohe Oilfield[J]. Journal of Jilin University(Earth Science Edition), 2008, 38(5): 757-764.
[21] 张晓诚, 王晓鹏, 李进, 等. 渤海油田疏松砂岩压裂充填技术研究与应用[J]. 石油机械, 2021, 49(9): 66-72.
[21] ZHANG Xiaocheng, WANG Xiaopeng, LI Jin, et al. Research and application of fracturing filling technology for loose sandstone in Bohai Oilfield[J]. China Petroleum Machinery, 2021, 49(9): 66-72.
[22] 赵润琦, 陈振良, 史怀忠, 等. 斧形PDC齿破碎致密硬质砂岩特性数值模拟研究[J]. 石油机械, 2021, 49(10): 8-16.
[22] ZHAO Runqi, CHEN Zhenliang, SHI Huaizhong, et al. Numerical simulation study on characteristics of tight hard sand broken by axe-shaped PDC cutter[J]. China Petroleum Machinery, 2021, 49(10): 8-16.
[23] 刘成林, 任杨, 孙林, 等. 海上特低渗砂岩储层酸化增效技术研究与应用[J]. 石油机械, 2022, 50(9): 117-124.
[23] LIU Chenglin, REN Yang, SUN Lin, et al. Research and application of acidizing technology in offshore ultra-low permeability sandstone reservoir[J]. China Petroleum Machinery, 2022, 50(9): 117-124.
文章导航

/