方法理论

一种基于τ模型算法的岩相建模方法及应用

  • 雷诚 ,
  • 崔炳凯 ,
  • 翟光华 ,
  • 叶禹 ,
  • 徐庆岩 ,
  • 张瑾琳
展开
  • 1.中国石油勘探开发研究院,北京 100083
    2.中国石油尼日尔公司,尼日尔 尼亚美 999056
    3.中国石油集团工程技术研究院有限公司,北京 102206
雷诚(1989—),男,博士,工程师,主要从事开发地质方面的研究。地址:北京市海淀区学院路20号中国石油勘探开发研究院非洲研究所,邮政编码:100083。E-mail:leichengnx@petrochina.com.cn

收稿日期: 2021-10-14

  网络出版日期: 2023-04-26

A lithofacies modeling method based on a new integrated algorithm and its application

  • Cheng LEI ,
  • Bingkai CUI ,
  • Guanghua ZHAI ,
  • Yu YE ,
  • Qingyan XU ,
  • Jinlin ZHANG
Expand
  • 1. CNPC Research Institute of Petroleum Exploration & Development, Beijing 100083, China
    2. CNPC Niger Petroleum S.A., Niamey 999056, Niger
    3. CNPC Engineering Technology R&D Company Ltd., Beijing 102206, China

Received date: 2021-10-14

  Online published: 2023-04-26

摘要

基于地震反演约束的三维储层建模技术将地震数据和测井数据有效结合,既体现了测井数据的垂向分辨率,又考虑了反演数据体反映的储层横向变化特征,是目前油藏分析的主流方法。但在传统的地震数据与测井数据结合算法中,两者对最终岩相的约束权重难于控制,且将两者假设为相互完全独立或条件独立,会在最终结果中出现各种不一致性,例如预测砂岩概率值大于1。该文引入τ模型算法,并将其进行改进,使其在数据相互依赖的复杂情况下,也可确保结果的一致性。同时将该算法应用于尼日尔D油田的岩相建模中,并利用迭代优化算法确定相关系数,使得砂体概率预测平均误差减少30 %,有效提高了砂体预测精度。

本文引用格式

雷诚 , 崔炳凯 , 翟光华 , 叶禹 , 徐庆岩 , 张瑾琳 . 一种基于τ模型算法的岩相建模方法及应用[J]. 油气藏评价与开发, 2023 , 13(2) : 206 -214 . DOI: 10.13809/j.cnki.cn32-1825/te.2023.02.009

Abstract

The 3D reservoir modeling technology based on seismic inversion constraints effectively combines seismic data and logging data, which not only reflects the high vertical resolution of logging data, but also considers the lateral variation characteristics of reservoirs reflected by inversion data. It is currently the mainstream method of reservoir analysis. However, in the traditional combination of seismic data and logging data, the weight of the constraints on the final lithofacies is difficult to control. And the traditional full independence or conditional independence hypotheses lead to seismic data and logging data combination algorithms are rough, they may result in inconsistencies such as probability values greater than 1 if the each conditional probabilities are valued independently one from another. An alternative combination algorithm, model τ, is proposed which is not only simple, but also can ensure consistency of results in the presence of complex data interdependencies. At the same time, the algorithm is applied to the lithofacies modeling of D oilfield in Niger, and the average error of sand body probability is reduced by 30 %, which effectively improves the prediction accuracy of the sand body.

参考文献

[1] BEHRENS R A, MACLEOD M K, TRAN T T, et al. Incorporating seismic attribute maps in 3D reservoir modeled[J]. SPE Reservoir Evaluation & Engineering, 1998, 1(2): 122-126.
[2] DUBRULE O, THIBAUT M, LAMY P, et al. Geostatistical reservoir characterization constrained by 3D seismic data[J]. Petroleum Geoscience, 1998, 4(2): 121-128.
[3] 印兴耀, 刘永社. 储层建模中地质统计学整合地震数据的方法及研究进展[J]. 石油地球物理勘探, 2002, 37(4): 423-430.
[3] YIN Xingyao, LIU Yongshe. Methods and development of integrating seismic data in reservoir model-building[J]. Oil Geophysical Prospecting, 2002, 37(4): 423-430.
[4] 刘文岭. 地震约束储层地质建模技术[J]. 石油学报, 2008, 29(1): 64-68.
[4] LIU Wenling. Geological modeling technique for reservoir constrained by seismic data[J]. Acta Petrolei Sinica, 2008, 29(1): 64-68.
[5] 胡勇, 于兴河, 李胜利, 等. 应用地震正反演技术提高地质建模精度[J]. 石油勘探与开发, 2014, 41(2): 190-197.
[5] HU Yong, YU Xinghe, LI Shengli, et al. Improving the accuracy of geological model by using seismic forward and inversion techniques[J]. Petroleum Exploration and Development, 2014, 41(2): 190-197.
[6] 杨锴, 艾迪飞, 耿建华. 井间地震与地面地震数据联合约束下的地质统计学随机建模方法研究[J]. 地球物理学报, 2012, 55(8): 2695-2704.
[6] YANG Kai, AI Difei, GEN Jianhua. A new geostatistical inversion and reservoir modeling technique constrained by well-log, crosshole and surface seismic data[J]. China Journal of Geophysics, 2012, 55(8): 2695-2704.
[7] 王家华, 赵巍. 基于地震约束的地质统计学建模方法研究[J]. 海洋石油, 2010, 30(4): 46-49.
[7] WANG Jiahua, ZHAO Wei. Research on geostatistical modeling method constrained by seismic data[J]. Offshore Oil, 2010, 30(4): 46-49.
[8] 于兴河, 李胜利, 赵舒, 等. 河流相油气储层的井震结合相控随机建模约束方法[J]. 地学前缘, 2008, 15(4): 33-41.
[8] YU Xinghe, LI Shengli, ZHAO Shu, et al. The constraining method on stochastic modeling for fluvial petroleum reservoir con-trolled by depositional facies integrating wells with seismic data[J]. Earth Science Frontiers, 2008, 15(4): 33-41.
[9] 尹艳树, 翟瑞, 吴胜和. 综合多学科信息建模——以港东开发区二区六区块储层微相三维分布模型为例[J]. 天然气地球科学, 2007, 18(3): 408-411.
[9] YIN Yanshu, ZHAI Rui, WU Shenghe. Integrating data from multiple disciplines in reservoir modeling: A case from the reservoir microfacies of No. 6 district of No. 2 region, Gangdong oilfield[J]. Natural Gas Geoscience, 2007, 18(3): 408-411.
[10] 崇仁杰, 刘静. 以地震反演资料为基础的相控储层建模方法在BZ251油田[J]. 中国海上油气(地质), 2003, 17(5): 307-311.
[10] CHONG Renjie, LIU Jing. Application of a facies-controlled reservoir modeling method based on seismic inversion data in BZ25-1 oilfield[J]. China Offshore Oil and Gas, 2003, 17(5): 307-311.
[11] 周丽清, 赵丽敏, 赵国梁, 等. 高分辨率地震约束相建模[J]. 石油勘探与开发, 2002, 29(3): 56-58.
[11] ZHOU Liqing, ZHAO Limin, ZHAO Guoliang, et al. Stochastic facies modeling constrained by high-resolution seismic data[J]. Petroleum Exploration and Development, 2002, 29(3): 56-58.
[12] 孙月成, 张楠, 李成立, 等. 三维数据体时深转换速度模型的精细构建方法[J]. 大庆石油地质与开发, 2018, 37(3): 145-152.
[12] SUN Yuecheng, ZHANG Nan, LI Chengli, et al. Fine velocity modeling method of the time-depth conversion for 3D data volume[J]. Petroleum Geology & Oilfield Development in Daqing, 2018, 37(3): 145-152.
[13] 谭学群, 刘云燕, 周晓舟, 等. 复杂断块油藏三维地质模型多参数定量评价[J]. 石油勘探与开发, 2019, 46(1): 185-194.
[13] TAN Xuequn, LIU Yunyan, ZHOU Xiaozhou, et al. Multi-parameter quantitative assessment of 3D geological models for complex fault-block oil reservoirs[J]. Petroleum Exploration and Development, 2019, 46(1): 185-194.
[14] 张磊夫, 董大忠, 孙莎莎, 等. 三维地质建模在页岩气甜点定量表征中的应用——以扬子地区昭通页岩气示范区为例[J]. 天然气地球科学, 2019, 30(9): 1332-1340.
[14] ZHANG Leifu, DONG Dazhong, SUN Shasha, et al. Application of 3D geological modeling in quantitative characterization of shale gas sweet spots: Case study of Zhaotong national demonstration area of Yangtze region[J]. Natural Gas Geoscience, 2019, 30(9): 1332-1340.
[15] 叶小明, 霍春亮, 王鹏飞, 等. 井震静动四位一体储层建模方法[J]. 油气藏评价与开发, 2017, 7(4): 1-5.
[15] YE Xiaoming, HUO Chunliang, WANG Pengfei, et al. A reservoir modeling method by comprehensive utilization of various data[J]. Petroleum Reservoir Evaluation and Development, 2017, 7(4): 1-5.
[16] JOURNEL A G. Combining knowledge from diverse sources: An alternative to traditional data independence hypotheses[J]. Mathematical Geology, 2002, 34(5): 573-596.
[17] 王家华, 夏吉庄. 三维地震约束多点建模降低井间砂体预测的不确定性[J]. 沉积学报, 2013, 31(5): 878-888.
[17] WANG Jiahua, XIA Jizhuang. Multi-point statistical modeling constrained by 3D data reducing of uncertainty of sand body prediction[J]. Acta Sedimentologica Sinica, 2013, 31(5): 878-888.
[18] 陈泓竹, 王彦春, 高阳. C51井区葡萄花储层薄砂体展布地震精细刻画[J]. 石油地球物理勘探, 2019, 54(3): 600-607.
[18] CHEN Hongzhu, WANG Yanchun, GAO Yang. Seismic fine depiction of the thin sand distribution of the Putaohua Reservoir in the Well C51 Area[J]. Oil Geophysical Prospecting, 2019, 54(3): 600-607.
[19] 常少英, 刘玲利, 崔钰瑶, 等. 浅水三角洲薄砂层地震沉积表征技术——以准噶尔盆地芳草湖地区清水河组为例[J]. 岩性油气藏, 2022, 34(1): 139-147.
[19] CHANG Shaoying, LIU Lingli, CUI Yuyao, et al. Seismic sedimentary characterization of thin sand layers of shallow water deltas: A case study of Qingshuihe Formation in Fangcaohu area, Junggar Basin[J]. Lithologic Reservoirs, 2022, 34(1): 139-147.
[20] 周超宇. 地质统计学地震反演技术在溱潼南华地区薄砂层的预测应用[J]. 非常规油气, 2018, 5(4): 23-26.
[20] ZHOU Chaoyu. Application of the geostatistical seismic inversion in thin sand in Nanhua Area, Qintong Sag[J]. Unconventional Oil & Gas, 2018, 5(4): 23-26.
[21] 潘翼, 宫伟, 赵匡, 等. 基于地震反演约束的储层建模方法及应用[J]. 成都理工大学学报(自然科学版), 2017, 44(5): 529-534.
[21] PAN Yi, GONG Wei, ZHAO Kuang, et al. Application research of reservoir modeling based on seismic inversion constraint[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2017, 44(5): 529-534.
[22] 原福堂, 董红, 朱再文, 等. 地质统计学随机反演与稀疏脉冲反演在储层预测中的应用对比[J]. 石油天然气学报, 2014, 36(7): 55-59.
[22] YUAN Futang, DONG Hong, ZHU Zaiwen, et al. Application comparison between sparse spike inversion and geostatistical inversion in reservoir prediction[J]. Journal of Oil and Gas Technology, 2014, 36(7): 55-59.
[23] 戴婉薇, 范乐元, 胡圣利, 等. 基于地质统计学反演和储层分类的相控储层建模方法究及应用[J]. 地质科技情报, 2017, 36(1): 236-241.
[23] DAI Wanwei, FAN Leyuan, HU Shengli, et al. Facies-controlled reservoir modeling method based on geostatistical inversion and reservoir classification[J]. Bulletin of Geological Science and Technology, 2017, 36(1): 236-241.
文章导航

/