油气藏评价与开发 >
2023 , Vol. 13 >Issue 3: 269 - 297
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2023.03.001
CO2地质封存源汇匹配及安全性评价进展
收稿日期: 2023-02-15
网络出版日期: 2023-06-26
基金资助
国家自然科学基金面上项目“超低渗透油藏CO2强化采油过程中多孔介质相态及微观渗流机理研究”(51974268)
Progress in source-sink matching and safety evaluation of CO2 geological sequestration
Received date: 2023-02-15
Online published: 2023-06-26
CCUS是实现碳中和目标的重要技术手段,目前中国正处于“双碳”目标的落实阶段,在CO2地质封存的经济界限评价、源汇优化和安全监测方面还缺乏成熟的技术体系。从封存技术经济界限、源汇匹配技术、封存安全性及监测3个方面总结了中国CO2地质封存技术发展历程。回顾了CCUS技术在捕集、运输、注入封存阶段的经济成本,进一步总结了目前各阶段的技术经济界限及其影响因素。此外,通过总结国内外CCUS源汇匹配技术发展现状,明确了中国源汇特征及其分布,提出了进一步开展源汇匹配优化技术的发展方向。最后,通过总结CO2地质封存安全风险评价及封存监测技术,明确了经济高效、有效、定量的监测方法是未来的研究重点。
李士伦 , 汤勇 , 段胜才 , 秦佳正 , 陈一诺 , 刘雅昕 , 郑鹏 , 赵国庆 . CO2地质封存源汇匹配及安全性评价进展[J]. 油气藏评价与开发, 2023 , 13(3) : 269 -297 . DOI: 10.13809/j.cnki.cn32-1825/te.2023.03.001
CCUS is an important technical means to achieve the carbon neutrality goal. At present, China is in the implementation stage of the “dual carbon” goal, and there is still a lack of mature technical system in the economic boundary assessment, source-sink optimization and safety monitoring of geological sequestration of CO2. This paper summarizes the development process of China's CO2 geological sequestration technique from three aspects, economic boundaries of sequestration technology, source-sink matching technology, and sequestration safety and monitoring, reviews the economic costs of CCUS technology in the capture, transportation, injection and burial period, and further summarizes the current technical and economic boundaries and influencing factors of each period. In addition, by summarizing the current development status of CCUS source-sink matching technology at home and abroad, the source-sink characteristics and distribution of China have been clarified, and further development directions for source sink matching optimization technology have been proposed. Finally, by summarizing the safety risk assessment and burial monitoring techniques for geological sequestration of CO2, it is clear that economically efficient, effective, and quantitative monitoring methods are the focus of future research.
[1] | ZHANG C Y, YU B, CHEN J M, et al. Green transition pathways for cement industry in China[J]. Resources, Conservation and Recycling, 2021, 166: 105355. |
[2] | LI X Y, GAO X, XIE J J. Comparison and clarification of China and US CCUS technology development[J]. Atmosphere, 2022, 13(12): 2114. |
[3] | 李士伦, 汤勇, 侯承希. 注CO2提高采收率技术现状及发展趋势[J]. 油气藏评价与开发, 2019, 9(3): 1-8. |
[3] | LI Shilun, TANG Yong, HOU Chengxi. Present situation and development trend of CO2 injection enhanced oil recovery technology[J]. Petroleum Reservoir Evaluation and Development, 2019, 9(3): 1-8. |
[4] | 胡永乐, 郝明强. CCUS产业发展特点及成本界限研究[J]. 油气藏评价与开发, 2020, 10(3): 15-22. |
[4] | HU Yongle, HAO Mingqiang. Development characteristics and cost analysis of CCUS in China[J]. Petroleum Reservoir Evaluation and Development, 2020, 10(3): 15-22. |
[5] | 蔡博峰, 李琦, 张贤, 等. 中国二氧化碳捕集利用与封存 (CCUS)年度报告(2021)——中国 CCUS 路径研究[R]. 武汉: 生态环境部环境规划院, 中国科学院武汉岩土力学研究所, 2021. |
[5] | CAI Bofeng, LI Qi, ZHANG Xian, et al. China carbon dioxide capture, utilization and storage (CCUS) annual report (2021)——China CCUS pathway study[R]. Wuhan: China Academy of Environmental Planning, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, 2021. |
[6] | AMINU M D, NABAVI S A, ROCHELLE C A, et al. A review of developments in carbon dioxide storage[J]. Applied Energy, 2017, 208: 1389-1419. |
[7] | 桑树勋, 刘世奇, 陆诗建, 等. 工程化CCUS全流程技术及其进展[J]. 油气藏评价与开发, 2022, 12(5): 711-725. |
[7] | SANG Shuxun, LIU Shiqi, LU Shijian, et al. Engineered full flowsheet technology of CCUS and its research progress[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(5): 711-725. |
[8] | IRLAM L. The costs of CCS and other low-carbon technologies in the United States: 2015 update[R]. Australia: Global Carbon Capture and Storage Institute Canberra, 2015. |
[9] | 顾锋. 江苏地区液相CO2注入工艺及经济可行性评价[J]. 石化技术, 2022, 29(5): 66-67. |
[9] | GU Feng. Liquid phase CO2 injection technology and economic feasibility evaluation in Jiangsu area[J]. Petrochemical Industry Technology, 2022, 29(5): 66-67. |
[10] | 刘牧心, 梁希, 林千果. 碳中和背景下中国碳捕集、利用与封存项目经济效益和风险评估研究[J]. 热力发电, 2021, 50(9): 18-26. |
[10] | LIU Muxin, LIANG Xi, LIN Qianguo. Economic analysis and risk assessment for carbon capture, utilization and storage project under the background of carbon neutrality in China[J]. Thermal Power Generation, 2021, 50(9): 18-26. |
[11] | 张贤, 李阳, 马乔, 等. 中国碳捕集利用与封存技术发展研究[J]. 中国工程科学, 2021, 23(6): 70-80. |
[11] | ZHANG Xian, LI Yang, MA Qiao, et al. Development of carbon capture, utilization and storage technology in China[J]. Strategic Study of CAE, 2021, 23(6): 70-80. |
[12] | 王香增, 杨红, 王伟, 等. 延长油田低渗透油藏提高采收率技术进展[J]. 油气地质与采收率, 2022, 29(4): 69-75. |
[12] | WANG Xiangzeng, YANG Hong, WANG Wei, et al. Technical advancements in enhanced oil recovery in low permeability reservoirs of Yanchang Oilfield[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(4): 69-75. |
[13] | 黄程, 霍丽如, 吴辰泓. 基于非常规油气开发的CO2资源化利用技术进展及前景[J]. 非常规油气, 2022, 9(1): 1-9. |
[13] | HUANG Cheng, HUO Liru, WU Chenhong. Progress and prospect of CO2 resource utilization technology based on unconventional oil and gas development[J]. Unconventional Oil & Gas, 2022, 9(1): 1-9. |
[14] | VIKARA D, SHIH C Y, LIN S M, et al. US DOE's economic approaches and resources for evaluating the cost of implementing carbon capture, utilization, and storage (CCUS)[J]. Journal of Sustainable Energy Engineering, 2017, 5(4): 307-340. |
[15] | MORGAN D, REMSON D, GUINAN A, et al. Comparative analysis of transport and storage options from a CO2 generating source perspective[C]// Paper NETL-PUB-21240 presented by NETL at 9th Trondheim Conference on CO2 Capture, Transport and Storage, Trondheim, 2017. |
[16] | LANE J, GREIG C, GARNETT A. Uncertain storage prospects create a conundrum for carbon capture and storage ambitions[J]. Nature Climate Change, 2021, 11(11): 925-936. |
[17] | MAJUMDAR A, DEUTCH J. Research opportunities for CO2 utilization and negative emissions at the gigatonne scale[J]. Joule, 2018, 2(5): 805-809. |
[18] | 袁士义, 马德胜, 李军诗, 等. 二氧化碳捕集、驱油与封存产业化进展及前景展望[J]. 石油勘探与开发, 2022, 49(4): 828-834. |
[18] | YUAN Shiyi, MA Desheng, LI Junshi, et al. Progress and prospects of carbon dioxide capture, EOR-utilization and storage industrialization[J]. Petroleum Exploration and Development, 2022, 49(4): 828-834. |
[19] | 王喜平, 唐荣. 燃煤电厂碳捕集、利用与封存商业模式与政策激励研究[J]. 热力发电, 2022, 51(8): 29-41. |
[19] | WANG Xiping, TANG Rong. Research on business model and policy incentives for carbon capture, utilization and storage in coal-fired power plants[J]. Thermal Power Generation, 2022, 51(8): 29-41. |
[20] | ZHANG C Y, YU B, CHEN J M, et al. Green transition pathways for cement industry in China[J]. Resources, Conservation and Recycling, 2021, 166: 105355. |
[21] | ABDRLAAL M, ZEIDOUNI M. Injection data analysis using material balance time for CO2 storage capacity estimation in deep closed saline aquifers[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109385. |
[22] | 张冰, 梁凯强, 王维波, 等. 鄂尔多斯盆地深部咸水层 CO2有效地质封存潜力评价[J]. 非常规油气, 2019, 6(3): 15-20. |
[22] | ZHANG Bing, LIANG Kaiqiang, WANG Weibo, et al. Evaluation of effective CO2 geological sequestration potential of deep saline aquifer in Ordos Basin[J]. Unconventional Oil & Gas, 2019, 6(3): 15-20. |
[23] | 唐良睿, 贾英, 严谨, 等. 枯竭气藏 CO2 封存潜力计算方法研究[J]. 油气藏评价与开发, 2021, 11(6): 858-863. |
[23] | TANG Liangrui, JIA Ying, YAN Jin, et al. Study on calculation method of CO2 storage potential in depleted gas reservoir[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(6): 858-863. |
[24] | YU S, HORING J, LIU Q, et al. CCUS in China's mitigation strategy: insights from integrated assessment modeling[J]. International Journal of Greenhouse Gas Control, 2019, 84: 204-218. |
[25] | 李海峰, 王强. CCUS中CO2利用和地质封存研究[J]. 现代化工, 2022, 42(10): 86-90. |
[25] | LI Haifeng, WANG Qiang. Study on utilization and geological storage of CO2 in CCUS[J]. Modern Chemical Industry, 2022, 42(10): 86-90. |
[26] | 王锐, 李阳, 吕成远, 等. 鄂尔多斯盆地深部咸水层CO2驱水与封存潜力评价方法研究[J]. 非常规油气, 2021, 8(5): 50-55. |
[26] | WANG Rui, LI Yang, LYU Chengyuan, et al. Study on potential evaluation method on CO2 EWR and storage for deep saline layers in Ordos Basin[J]. Unconventional Oil & Gas, 2021, 2021, 8(5): 50-55. |
[27] | 李娜娜, 赵晏强, 秦阿宁, 等. 国际碳捕集、利用与封存科技战略与科技发展态势分析[J]. 热力发电, 2022, 51(10): 19-27. |
[27] | LI Nana, ZHAO Yanqiang, QIN Aning, et al. Analysis of international carbon capture, utilization and storage strategy and scientific development trend[J]. Thermal Power Generation, 2022, 51(10): 19-27. |
[28] | GüR T M. Carbon dioxide emissions, capture, storage and utilization: Review of materials, processes and technologies[J]. Progress in Energy and Combustion Science, 2022, 89: 100965. |
[29] | 王建军. HB地区燃煤电厂CCUS源汇匹配管网优化设计[D]. 成都: 成都理工大学, 2021. |
[29] | WANG Jianjun. Optimal design of CCUS source sink matching pipe network for coal fired power plants in North China[D]. Chengdu: Chengdu University of Technology, 2021. |
[30] | 刘牧心, 肖茗月, 梁希, 等. 缺乏地质封存条件地区开展 CCUS 项目集群化建设的可行性研究: 以江西省为例[J]. 热力发电, 2021, 50(12): 132-138. |
[30] | LIU Muxin, XIAO Mingyue, LIANG Xi, et al. Feasibility study on cluster construction of CCUS projects in areas lacking geological storage conditions: A case study of Jiangxi Province[J]. Thermal Power Generation, 2021, 50(12): 132-138. |
[31] | ZHANG X, LI K, WEI N, et al. Advances, challenges and perspectives for CCUS source-sink matching models under carbon neutrality target[J]. Carbon Neutrality, 2022, 1(1): 12. |
[32] | 田辉, 郭辛阳, 宋雨媛, 等. 基于化学热力学的耐二氧化碳腐蚀水泥水化产物控制[J]. 钻采工艺, 2021, 44(2): 86-89. |
[32] | TIAN Hui, GUO Xinyang, SONG Yuyuan, et al. Control of hydration products of CO2 resistant cements based on chemical thermodynamics[J]. Drilling & Production Technology, 2021, 44(2): 86-89. |
[33] | 王维波, 汤瑞佳, 江绍静, 等. 延长石油煤化工CO2捕集、利用与封存(CCUS)工程实践[J]. 非常规油气, 2021, 8(2): 1-7. |
[33] | WANG Weibo, TANG Ruijia, JIANG Shaojing, et al. The engineering practice of CO2 capture, utilization and storage(CCUS)in coal chemical industry of Yanchang Petroleum[J]. Unconventional Oil & Gas, 2021, 8(2): 1-7. |
[34] | 王晓桥, 马登龙, 夏锋社, 等. 封储二氧化碳泄漏监测技术的研究进展[J]. 安全与环境工程, 2020, 27(2): 23-34. |
[34] | WANG Xiaoqiao, MA Denglong, XIA Fengshe, et al. Research progress on leakage monitoring technology for CO2 storage[J]. Safety and Environmental Engineering, 2020, 27(2): 23-34. |
[35] | 柏明星, 张志超, 白华明, 等. 二氧化碳地质封存系统泄漏风险研究进展[J]. 特种油气藏, 2022, 29(4): 1-11. |
[35] | BAI Mingxing, ZHANG Zhichao, BAI Huaming, et al. Progress in leakage risk study of CO2 geosequestration system[J]. Special Oil & Gas Reservoirs, 2022, 29(4): 1-11. |
[36] | 武治强, 岳家平, 李强, 等. 套管与水泥环胶结界面水力密封完整性评价实验研究[J]. 中国海上油气, 2018, 30(6): 129-134. |
[36] | WU Zhiqiang, YUE Jiaping, LI Qiang, et al. Experimental study on the hydraulic seal integrity evaluation of casing-cement sheath bonding interface[J]. China Offshore Oil and Gas, 2018, 30(6): 129-134. |
[37] | GILMORE K A, SAHU C K, BENHAM G P, et al. Leakage dynamics of fault zones: Experimental and analytical study with application to CO2 storage[J]. Journal of Fluid Mechanics, 2022, 931: A31. |
[38] | BAI M, SHEN A, MENG L, et al. Well completion issues for underground gas storage in oil and gas reservoirs in China[J]. Journal of Petroleum Science and Engineering, 2018, 171(6): 584-591. |
[39] | QIN J, SONG J, TANG Y, et al. Well applicability assessment based on fuzzy theory for CO2 sequestration in depleted gas reservoirs[J]. Renewable Energy, 2023, 206: 239-250. |
[40] | NAMHATA A, SMALL M J, DILMORE R M, et al. Bayesian inference for heterogeneous caprock permeability based on above zone pressure monitoring[J]. International Journal of Greenhouse Gas Control, 2017, 57(1): 89-101. |
[41] | 任伟建, 于雪, 霍凤财, 等. 基于贝叶斯网络的油田管道失效概率计算[J]. 吉林大学学报(信息科学版), 2021, 39(1): 66-76. |
[41] | REN Weijian, YU Xue, HUO Fengcai, et al. Calculation of failure probability of oil field pipeline based on Bayesian network[J]. Journal of Jilin University(Information Science Edition), 2021, 39(1): 66-76. |
[42] | 张延旭, 姜晶, 王涛, 等. 神经网络法在油藏封存CO2效果预测中的应用[J]. 精细石油化工进展, 2018, 19(2): 29-32. |
[42] | ZHANG Yanxu, JIANG Jing, WANG Tao, et al. Application of artificial neural network in forecast of carbon dioxide storage in reservoir[J]. Advances in Fine Petrochemicals, 2018, 19(2): 29-32. |
[43] | CAO C, LIU H J, HOU Z M, et al. A review of CO2 storage in view of safety and cost-effectiveness[J]. Energies, 2020, 13(3): 600. |
[44] | LI Y H, SHEN C H, WU C Y, et al. Numerical study of CO2 geological storage in saline aquifers without the risk of leakage[J]. Energies, 2020, 13(20): 5259. |
[45] | SHEN X, DONG W, WAN Y, et al. Numerical simulation of effects of microbial action on CO2 geological storage in deep saline aquifers[J]. Natural Resources Research, 2021, 30: 1629-1648. |
[46] | POSTMA T J W. Prospects for large-scale implementation of carbon sequestration in basalt: Capacity, storage security and the rate of mineral trapping[D]. Princeton: Princeton University, 2022. |
[47] | 胡永乐, 郝明强, 陈国利, 等. 中国CO2驱油与封存技术及实践[J]. 石油勘探与开发, 2019, 46(4): 716-727. |
[47] | HU Yongle, HAO Mingqiang, CHEN Guoli, et al. Technologies and practice of CO2 flooding and sequestration in China[J]. Petroleum Exploration and Development, 2019, 46(4): 716-727. |
[48] | 张宗檩, 吕广忠, 王杰. 胜利油田CCUS技术及应用[J]. 油气藏评价与开发, 2021, 11(6): 812-822. |
[48] | ZHANG Zonglin, LYU Guangzhong, WANG Jie. CCUS and its application in Shengli Oilfield[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(6): 812-822. |
[49] | AJAYI T, GOMES J S, BERA A. A review of CO2 storage in geological formations emphasizing modeling, monitoring and capacity estimation approaches[J]. Petroleum Science, 2019, (5): 1-36. |
[50] | 杨天方, 薛晓军, 付联名. 地层压力监测方法改进及在钻井中的应用[J]. 钻采工艺, 2021, 44(2): 1-4. |
[50] | YANG Tianfang, XUE Xiaojun, FU Lianming. Improvement of formation pressure monitoring method and its application in drilling[J]. Drilling & Production Technology, 2021, 44(2): 1-4. |
[51] | 吴保玉, 宋振云, 陈平. 气井井筒CO2腐蚀及结垢监测实验研究[J]. 钻采工艺, 2021, 44(1): 77-81. |
[51] | WU Baoyu, SONG Zhenyun, CHEN Ping. Experimental study on CO2 corrosion and scaling monitoring in gas wells[J]. Drilling & Production Technology, 2021, 44(1): 77-81. |
/
〈 | 〉 |