方法理论

枯竭气藏CO2封存中的相平衡规律研究

  • 杨宇 ,
  • 徐启林 ,
  • 刘荣和 ,
  • 黄东杰 ,
  • 颜平 ,
  • 王建猛
展开
  • 1.成都理工大学能源学院,四川 成都 610059
    2.中国石油川庆钻探工程有限公司,四川 成都 610051
    3.四川省非金属(盐业)地质调查研究所,四川 自贡 643021
杨宇(1973—),男,博士,教授,主要从事油气藏精细描述、数值模拟工作。地址:四川省成都市成华区二仙桥东三路1号,邮政编码:610059。E-mail:yangyu@cdut.edu.cn

收稿日期: 2022-12-02

  网络出版日期: 2023-06-26

基金资助

国家科技重大专项“丝绸之路经济带大型碳酸盐岩油气藏开发关键技术”(2017ZX05030)

Phase equilibrium law of CO2 storage in depleted gas reservoirs

  • Yu YANG ,
  • Qilin XU ,
  • Ronghe LIU ,
  • Dongjie HUANG ,
  • Ping YAN ,
  • Jianmeng WANG
Expand
  • 1. College of Energy, Chengdu University of Technology, Chengdu, Sichuan 610059, China
    2. CNPC Chuanqing Drilling Engineering Co., Ltd., Chengdu, Sichuan 610051, China
    3. Sichuan Institute of Nonmetallic (Salt Industry) Geological Survey, Zigong, Sichuan 643021, China

Received date: 2022-12-02

  Online published: 2023-06-26

摘要

在枯竭气藏CO2注入及封存过程中,注入的CO2引起气、水、固三相之间的再平衡,伴随出现CO2溶解、水蒸发和盐析现象,影响近井带地层物性。以川西的枯竭气藏为例,采用SRK-HV方程和盐析模型分析了枯竭气藏CO2注入过程中的三相变化规律。研究表明:在定容体系中的CO2注入过程中,随着CO2物质的量增加,气相压力增大,CO2溶解度逐渐增大,H2O在气相中的摩尔分数逐渐降低,但H2O在气相中的物质的量不断增加,说明水的总蒸发量加大。此外,水蒸发引起的水相体积减小量相对于初始水相体积较小。因此,地层水矿化度增加幅度较小。CO2的溶解加快了CaCO3的析出,同时抑制了CaSO4、CaSO4·2H2O的析出。在氯化钙型地层水中,随着矿化度增加,地层水中会析出CaCO3和CaSO4两种盐成分。该研究成果对枯竭气藏CO2注入过程中水蒸发及盐析规律研究具有一定的借鉴意义。

本文引用格式

杨宇 , 徐启林 , 刘荣和 , 黄东杰 , 颜平 , 王建猛 . 枯竭气藏CO2封存中的相平衡规律研究[J]. 油气藏评价与开发, 2023 , 13(3) : 280 -287 . DOI: 10.13809/j.cnki.cn32-1825/te.2023.03.002

Abstract

In the process of CO2 injection and storage of a single well in depleted gas reservoirs, the injected CO2 causes the rebalance among gas, water and solid, and the accompanying CO2 dissolution, water evaporation and salting out affect the physical properties of the formation near this well. Therefore, taking depleted gas reservoir in western Sichuan as an example, the SRK-HV equation and salting out model are used to analyze the three-phase change rule during the CO2 injection process of the depleted gas reservoir. The researches show that during the CO2 injection process in the constant volume system, with the increase of the number of mole of CO2, the gas phase pressure increases, the CO2 solubility gradually increases, and the mole fraction of H2O in the gas phase gradually decreases, but the total number of mole of H2O in the gas phase continuously increases, indicating that the total evaporation of water increases. In addition, the water phase volume reduction caused by water evaporation is smaller than the initial water phase volume, so the increase of formation water salinity is small. The dissolution of CO2 accelerates the precipitation of CaCO3, while inhibiting the precipitation of CaSO4 and CaSO4·2H2O. In calcium chloride type formation water, CaCO3 and CaSO4 will be separated with the increase of salinity. The research results has certain reference significance for the study of water evaporation and salting out during CO2 injection in depleted gas reservoirs.

参考文献

[1] 周守为, 朱军龙, 单彤文, 等. 中国天然气及LNG产业的发展现状及展望[J]. 中国海上油气, 2022, 34(1): 1-8.
[1] ZHOU Shouwei, ZHU Junlong, SHAN Tongwen, et al. Development status and outlook of natural gas and LNG industry in China[J]. China Offshore Oil and Gas, 2022, 34(1): 1-8.
[2] 江怀友, 沈平平, 王乃举, 等. 世界二氧化碳减排政策与储层地质埋存展望[J]. 中外能源, 2007, 12(5): 7-13.
[2] JIANG Huaiyou, SHEN Pingping, WANG Naiju, et al. Policies for CO2 emission reduction and prospects for CO2 gedlogical storage underground[J]. Sino-Global Energy, 2007, 12(5): 7-13.
[3] 王维波, 汤瑞佳, 江绍静, 等. 延长石油煤化工CO2捕集、利用与封存(CCUS)工程实践[J]. 非常规油气, 2021, 8(2): 1-7.
[3] WANG Weibo, TANG Ruijia, JIANG Shaojing, et al. The engineering practice of CO2 capture, utilization and storage(CCUS) in coal chemical industry of Yanchang Petroleum[J]. Unconventional Oil & Gas, 2021, 8(2): 1-7.
[4] 王锐, 李阳, 吕成远, 等. 鄂尔多斯盆地深部咸水层CO2驱水与埋存潜力评价方法研究[J]. 非常规油气, 2021, 8(5): 50-55.
[4] WANG Rui, LI Yang, LYU Chengyuan, et al. Study on potential evaluation method on CO2 EWR and storage for deep saline layers in Ordos Basin[J]. Unconventional Oil & Gas, 2021, 8(5): 50-55.
[5] HUGHES D S. Carbon storage in depleted gas field: Key challenges[J]. Energy Procedia, 2009, 1(1): 3007-3014.
[6] 崔国栋, 任韶然, 张亮, 等. 高温气藏地层水蒸发盐析规律及对产能的影响[J]. 石油勘探与开发, 2016, 43(5): 749-757.
[6] CUI Guodong, REN Shaoran, ZHANG Liang, et al. Formation water evaporation induced salt precipitation and its effect on gas production in high temperature natural gas reservoirs[J]. Petroleum Exploration and Development, 2016, 43(5): 749-757.
[7] 汤勇, 杜志敏, 蒋红梅, 等. 高温高压气藏地层水盐析引起的储层伤害[J]. 石油学报, 2012, 33(5): 859-863.
[7] TANG Yong, DU Zhimin, JIANG Hongmei, et al. Reservoir damages caused by formation water salt precipitation in high-pressure and high-temperature gas reservoirs[J]. Acta Petrolei Sinica, 2012, 33(5): 859-863.
[8] 雷霄, 王雯娟, 李跃林, 等. 考虑水蒸发的高温凝析气藏数值模拟方法[J]. 中国海上油气, 2022, 34(5): 101-107.
[8] LEI Xiao, WANG Wenjuan, LI Yuelin, et al. Numerical simulation for high temperature condensate gas reservoirs considering water evaporation[J]. China Offshore Oil and Gas, 2022, 34(5): 101-107.
[9] 汤勇, 杜志敏, 孙雷, 等. 考虑地层水蒸发的异常高温油气藏相态和渗流研究现状[J]. 钻采工艺, 2007, 30(5): 82-85.
[9] TANG Yong, DU Zhimin, SUN Lei, et al. Research on fluid phase behavior and flowing mechanics in abnormal high temperature oil-gas reservoirs considering formation water evaporation[J]. Drilling & Production Technology, 2007, 30(5): 82-85.
[10] 王彬. 气田近井地带高矿化度地层水蒸发和结盐规律研究[D]. 成都: 西南石油大学, 2016.
[10] WANG Bin. Study on the evaporation and salt deposition patterns of high salinity formation water in the near wellbore area of gas fields[D]. Chengdu: Southwest Petroleum University, 2016.
[11] 沈建新, 刘建仪, 刘举, 等. 迪那2气藏凝析水结垢规律实验研究[J]. 中国海上油气, 2022, 34(1): 94-101.
[11] SHEN Jianxin, LIU Jianyi, LIU Ju, et al. Experimental study on scaling law of condensate water in Dina 2 gas reservoir[J]. China Offshore Oil and Gas, 2022, 34(1): 94-101.
[12] ZHANG G X, TABERNER C, CARTWRIGHT L, et al. Injection of supercritical CO2 into deep saline carbonate formations: Predictions from geochemical modeling[J]. SPE Journal, 2011, 16(4): 959-967.
[13] PEYSSON Y. Permeability alteration induced by drying of brines in porous media[J]. The European Physical Journal-Applied Physics, 2012, 60(2): 24206.
[14] 鲁洪江, 杨洪志, AMRO M M, 等. 地下储气库注采循环过程中储层干化问题研究[J]. 石油钻探技术, 2018, 46(4): 1-8.
[14] LU Hongjiang, YANG Hongzhi, AMRO M M, et al. Drying process in underground gas Storage reservoir[J]. Petroleum Drilling Techniques, 2018, 46(4): 1-8.
[15] 沈琛, 王多才, 任众鑫, 等. 基于地层水蒸发的气井井筒结盐理论模型及实践—以文23储气库为例[J]. 天然气工业, 2022, 42(7): 65-74.
[15] SHEN Chen, WANG Duocai, REN Zhongxin, et al. Theoretical model and practices of wellbore salt deposition in gas wells based on formation water evaporation in Wen 23 underground gas storage[J]. Natural Gas Industry, 2022, 42(7): 65-74.
[16] KLEINITZ W, KOEHLER M, DIETZSCH G. The precipitation of salt in gas producing wells[C]// Paper SPE-68953-MS presented at the SPE European Formation Damage Conference, The Hague, Netherlands, May 2001.
[17] 王春燕, 吴宇航, 王雨薇, 等. 地层多孔介质中地层水蒸发盐析研究进展[J]. 应用化工, 2020, 49(S2): 261-265.
[17] WANG Chunyan, WU Yuhang, WANG Yuwei, et al. Research progress of formation water evaporation and salting out in formation porous media[J]. Applied Chemical Industry, 2020, 49(S2): 261-265.
[18] MORIN E, MONTEL F. Accurate predictions for the production of vaporized water[C]// Paper SPE-30719-MS presented at the SPE Annual Technical Conference and Exhibition, Dallas, Texas, October 1995.
[19] OTT H, KLOE K D, TABERNER C, et al. Rock/fluid interaction by injection of supercritical CO2/H2S: Investigation of dry-zone formation near the injection well[C]// International Symposium of the Society of Core Analysts, 2010.
[20] KIM M, SELL A, SINTON D. Aquifer-on-a-chip: Understanding pore-scale salt precipitation dynamics during CO2 sequestration[J]. Lab on A Chip, 2013, 13(13): 2508-2518.
[21] MIRI R, NOORT R V, AAGAARD P, et al. New insights on the physics of salt precipitation during injection of CO2 into saline aquifers[J]. International Journal of Greenhouse Gas Control, 2015, 43: 10-21.
[22] TANG Y, YANG R Z, DU Z M, et al. Experimental study of formation damage caused by complete water vaporization and salt precipitation in sandstone reservoirs[J]. Transport in Porous Media, 2015, 107(1): 205-218.
[23] 齐超, 刘拓, 易满满. 基于亥姆霍兹自由能的实际气体状态方程[J]. 化工装备技术, 2022, 43(4): 21-25.
[23] QI Chao, LIU Tuo, YI Manman. Equation of state for real gases based on helmholtz free energy[J]. Chemical Equipment Technology, 2022, 43(4): 21-25.
[24] LI Y K, NGHIEM L X. Phase equilibria of oil, gas and water/brine mixtures from a cubic equation of state and henry's law[J]. The Canadian Journal of Chemical Engineering, 1986, 64(3): 486-496.
[25] 侯大力, 罗平亚, 王长权, 等. 高温高压下CO2在水中溶解度实验及理论模型[J]. 吉林大学学报(地球科学版), 2015, 45(2): 564-572.
[25] HOU Dali, LUO Pingya, WANG Changquan, et al. Experimental research and theoretical model for CO2 solubility in water under high temperature and high pressure[J]. Journal of Jilin University(Earth Science Edition), 2015, 45(2): 564-572.
[26] HURON M J, VIDAL J. New mixing rules in simple equations of state for representing vapor-liquid equilibria of strongly non-ideal mixtures[J]. Fluid Phase Equilibria, 1979, 3(4): 255-271.
[27] SOAVE G. Equilibrium constants from a modified Redlich-Kwong equation of state[J]. Chemical Engineering Science, 1972, 27(6): 1197-1203.
[28] 李靖. 高温高压高含CO2天然气在地层水中溶解度理论研究[D]. 成都: 西南石油大学, 2017.
[28] LI Jing. Theoretical study on solubility of high CO2 content natural gas in formation water at high temperature and high pressure[D]. Chengdu: Southwest Petroleum University, 2017.
[29] 罗明检. SRK方程的改进及其在相平衡计算中的应用[D]. 天津: 天津大学, 2006.
[29] LUO Minjian. The modification of SRK equation of state and phase equilibrium calculation[D]. Tianjin: Tianjin University, 2006.
[30] 叶传永, 郑绵平. 青海尕斯库勒盐湖水体的化学组分存在形式及饱和指数研究[J]. 科技导报, 2016, 34(21): 101-111.
[30] YE Chuanyong, ZHENG Mianping. Study on existence forms of chemical compositions and saturation indexes of waters from Gasikule Salt Lake, Qinghai Province[J]. Science & Technology Review, 2016, 34(21): 101-111.
[31] 钱会, 马致远, 李培月. 水文地球化学[M]. 北京: 地质出版社, 2012.
[31] QIAN Hui, MA Zhiyuan, LI Peiyue. Hydrogeochemistry[M]. Beijing: Geological Publishing House, 2012.
[32] 刘林, 桑琴, 曹建, 等. 枯竭气藏改建储气库盖层封闭能力综合评价——以川西北中坝气田须二气藏为例[J]. 大庆石油地质与开发, 2022, 41(6): 42-50.
[32] LIU Lin, SANG Qin, CAO Jian, et al. Comprehensive evaluation of sealing capacity of depleted gas reservoir reconstructed to gas storage: A case study of Xu 2 gas reservoir in Zhongba Gas Field, northwest Sichuan[J]. Petroleum Geology & Oilfield Development in Daqing, 2022, 41(6): 42-50.
文章导航

/