油气藏评价与开发 >
2023 , Vol. 13 >Issue 3: 340 - 347
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2023.03.009
不同井斜页岩气水平井流动特征的CFD模拟研究
收稿日期: 2022-03-24
网络出版日期: 2023-06-26
基金资助
油气藏地质及开发工程国家重点实验室开放基金“致密气藏孔隙尺度多因素耦合作用渗吸机理研究”(PLN201933)
CFD simulation of flow characteristics of shale gas horizontal wells with different inclination
Received date: 2022-03-24
Online published: 2023-06-26
页岩气水平井流动特征的准确表征是定量评价生产动态及进一步指导开发方案优化设计的关键基础。为了探究页岩气水平井在不同井斜角下的气液两相流动规律,构建了管径为0.124 m,管长为10 m,井斜角依次为0°、5°、10°、15°、20°、30°、45°、-5°、-10°、-15°、-20°、-30°、-45°的三维立体仿真井筒模型,采用体积模型追踪气液界面,对井筒气液两相流动特征进行动态监测。模拟实验得到井下300 m3/d液量和500 m3/d气量在各井斜角下井筒的流型、平均流速和持率分布特征,深入分析井斜角对页岩气水平井气液两相流动特征的影响规律。结果表明:上倾管(井斜角大于0°)流型特征为段塞流,其流体平均速度随井斜角增加呈单峰式变化,在井斜角为15°时出现峰值,气液分界面处平均流速最低,且低井斜角较高井斜角时的底部持水率大,在井斜角为10°时达到最大值;下倾管(井斜角小于0°)流型特征为分层流,流体平均速度与井斜角呈线性递增关系,气液分界面处平均流速介于顶部和底部值之间,底部持水率随井斜角增加而减小。
邱小雪 , 钟光海 , 李贤胜 , 陈猛 , 凌玮桐 . 不同井斜页岩气水平井流动特征的CFD模拟研究[J]. 油气藏评价与开发, 2023 , 13(3) : 340 -347 . DOI: 10.13809/j.cnki.cn32-1825/te.2023.03.009
Accurate characterization of the flow characteristics of shale gas horizontal wells is the key basis for quantitative evaluation of production performance and further guidance of development program optimization design. In order to explore the gas-liquid two-phase flow law of shale gas horizontal wells at different inclination angles, a three-dimensional simulation wellbore model with the pipe diameter of 0.124 m, pipe length of 10 m and inclination angles of 0°, 5°, 10°, 15°, 20°, 30°, 45°, -5°, -10°, -15°, -20°, -30°, -45° respectively is constructed. The volume model is used to track the gas-liquid interface. The characteristics of gas-liquid two-phase flow in wellbore are dynamically monitored. The flow pattern, velocity and holdup distribution characteristics of wellbore with 300 m3/d liquid volume and 500 m3/d gas volume are obtained by simulation experiments under various well inclination angles, and the influence law of well inclination angle on gas-liquid two-phase flow characteristics of shale gas horizontal wells is deeply analyzed. The results show that the flow pattern of up-dip pipe(well angle is larger than 0°) is characterized by slug flow, and the average fluid velocity changes in a single-peak form with the increase of well angle, and the peak appears when the well angle is 15°. The flow velocity at the gas-liquid interface is the lowest, and the bottom water holdup is larger with lower well angle is than that with higher well angle, and reaches the maximum value when the well angle is 10°. The flow pattern of down-dip pipe(well angle is less than 0°) is characterized by stratified flow, and the average fluid velocity is linearly increasing with well inclination angle. The flow velocity at gas-liquid interface is between the top and bottom value, and the bottom water holdup decreases with the increase of well inclination angle.
[1] | 代理震, 蔡凌, 张兴凯, 等. 水平井小角度起伏管段积液规律的数值模拟[J]. 断块油气田, 2019, 26(6): 747-750. |
[1] | DAI Lizhen, CAI Ling, ZHANG Xingkai, et al. Numerical simulation of liquid loading of small angle hilly-terrain tube in horizontal gas well[J]. Fault-Block Oil & Gas Field, 2019, 26(6): 747-750. |
[2] | 张好林, 李根生, 黄中伟, 等. 倾斜井筒岩屑运移实验研究评述[J]. 钻采工艺, 2013, 36(5): 13-17. |
[2] | ZHANG Haolin, LI Gensheng, HUANG Zhongwei, et al. Review on experimental research on cuttings migration in inclined wellbore[J]. Drilling and Production Technology, 2013, 36(5): 13-17. |
[3] | 郭布民, 敬季昀, 王杏尊. 气井临界携液流量计算方法的改进[J]. 断块油气田, 2018, 25(4):484-487. |
[3] | GUO Bumin, JING Jiyun, WANG Xingzun. Calculation improvement of critical liquid-carrying flow rate for gas well[J]. Fault-Block Oil & Gas Field, 2018, 25(4): 484-487. |
[4] | 杜殿发, 张耀祖, 张莉娜, 等. 页岩气藏渗流机理研究进展与展望[J]. 非常规油气, 2021, 8(3): 1-9. |
[4] | DU Dianfa, ZHANG Yaozu, ZHANG Lina, et al. Research progress and prospect of seepage mechanism in shale gas reservoirs[J]. Unconventional Oil & Gas, 2021, 8(3): 1-9. |
[5] | 戴家才, 郭海敏, 秦明君, 等. GHT在气井生产动态监测中的应用[J]. 石油天然气学报(江汉石油学院学报), 2006, 28(2): 69-71. |
[5] | DAI Jiacai, GUO Haimin, QIN Minjun, et al. Application of GHT for detecting production performance of gas wells[J]. Journal of Oil and Gas Technology(J.JPI), 2006, 28(2): 69-71. |
[6] | 戴家才, 郭海敏, 何亿成, 等. 水平井、斜井集流式生产测井实验研究[J]. 测井技术, 2005, 29(6): 493-495. |
[6] | DAI Jiacai, GUO Haimin, HE Yicheng, et al. On experiments of packed production logging in horizontal or deviated wells[J]. Well Logging Technology, 2005, 29(6): 493-495. |
[7] | 戴家才, 郭海敏, 王界益, 等. 多相流生产测井井斜影响试验研究[J]. 石油天然气学报(江汉石油学院学报), 2006, 28(3): 69-71. |
[7] | DAI Jiacai, GUO Haimin, WANG Jieyi, et al. Experimental study of well deflection influence in multi-phase production logging[J]. Journal of Oil and Gas Technology(J.JPI), 2006, 28(3): 69-71. |
[8] | 宋红伟, 郭海敏, 戴家才. 水平井生产测井气水-两相流流型试验分析[J]. 石油天然气学报(江汉石油学院学报), 2011, 33(12): 96-101. |
[8] | SONG Hongwei, GUO Haimin, DAI Jiacai. Experimental analysis of gas-water flow pattern during production well logging in horizontal wells[J]. Journal of Oil and Gas Technology(J.JPI), 2011, 33(12): 96-101. |
[9] | 刘军锋, 郭海敏, 彭原平, 等. 大管径水平管油水两相流动特性试验研究[J]. 石油天然气学报(江汉石油学院学报), 2012, 34(7): 90-93. |
[9] | LIU Junfeng, GUO Haimin, PENG Yuanping, et al. Experimental study of flow behaviors for oil-water two-phase in large diameter horizontal pipe[J]. Journal of Oil and Gas Technology(J.JPI), 2012, 34(7): 90-93. |
[10] | 胡坤, 李振北. ANSYS ICEM CFD工程实例详解[M]. 北京: 人民邮电出版社, 2014. |
[10] | HU Kun, LI Zhenbei. ANSYS ICEM CFD engineering example details[M]. Beijing: People's Posts and Telecommunications Press, 2014. |
[11] | DEENDARLINATO, ANDRIANTOM, WIDYAPARAGA A, et al. CFD studies on the gas-liquid plug two-phase flow in a horizontal pipe[J]. Journal of Petroleum Science and Engineering, 2016, 147(2): 779-787. |
[12] | PAN Y X, ZHANG H B, XIE R H, et al. modeling of low viscosity oil-water annular flow in horizontal and slightly inclined pipes: Experiments and CFD simulations[J]. Korean Journal of Chemical Engineering, 2016, 33(10): 2820-2829. |
[13] | 赵金印. 圆管湍流及入口挡环对圆管湍流影响的实验研究和数值模拟[D]. 大连: 大连理工大学, 2002. |
[13] | ZHAO Jinyin. Experimental investigation and numerical simulation of turbulent pipe flow and the tripping effects[D]. Dalian: Dalian University of Technology, 2002. |
[14] | EKAMBARA K, SANDERS R S, NANDAKUMAR K, et al. CFD simulation of bubbly two-phase flow in horizontal pipe[J]. Chemical Engineering Journal, 2008, 144(2): 277-288. |
[15] | ABDULKADIR M, HERNANDEZ-PEREZ V, LO S, et al. Comparison of experimental and Computational Fluid Dynamics(CFD) studies of slug flow in a vertical riser[J]. Experimental Thermal and Fluid Science, 2015, 68: 468-483. |
[16] | 严谨. 气液两相流动的机理及影响因素[D]. 成都: 西南石油大学, 2005. |
[16] | YAN Jin. Mechanism and influencing factors of gas-liquid two-phase flow[D]. Chengdu: Southwest Petroleum University, 2005. |
[17] | 邱小雪, 戴家才, 陈猛, 等. 基于VOF对低产积液气井流动特征的数值模拟[J]. 断块油气田, 2020, 27(5): 619-623. |
[17] | QIU Xiaoxue, DAI Jiacai, CHEN Meng, et al. Numerical simulation of flow characteristics of low-yield and liquid loading gas well based on VOF[J]. Fault-Block Oil & Gas Field, 2020, 27(5): 619-623. |
[18] | AHMADPOUR A, ABADI S M A N R, KOUHIKAMALI R. Numerical simulation of two-phase gas-liquid flow through gradual expansions/contractions[J]. International Journal of Multiphase Flow, 2016, 79: 31-49. |
[19] | 边晓航, 刘军锋, 叶天明, 等. 大管径不同井斜油水两相流流型数值模拟[J]. 测井技术, 2016, 40(4): 399-403. |
[19] | BIAN Xiaohang, LIU Junfeng, YE Tianming, et al. Numerical simulation of oil-water two-phase flow pattern in large diameter and different inclined wells[J]. Well Logging Technology, 2016, 40(4): 399-403. |
[20] | 王克林, 刘洪涛, 程红伟, 等. 存在岩屑床的水平环空钻井液紊流CFD模拟[J]. 断块油气田, 2017, 24(1): 116-119. |
[20] | WANG Kelin, LIU Hongtao, CHENG Hongwei, et al. CFD simulation of turbulent drilling fluid flow in horizontal annuli with cuttings bed[J]. Fault-Block Oil & Gas Field, 2017, 24(1): 116-119. |
[21] | 阎昌琪. 气液两相流[M]. 黑龙江: 哈尔滨工程大学出版社, 2007. |
[21] | YAN Changqi. Gas liquid two phase flow[M]. Heilongjiang: Harbin Engineering University Press, 2007. |
[22] | 宋红伟, 郭海敏, 戴家才. 倾斜及水平井气液两相流层状流流动模型试验分析[J]. 石油天然气学报(江汉石油学院学报), 2013, 35(6): 86-92. |
[22] | SONG Hongwei, GUO Haimin, DAI Jiacai. Experimental analysis of flow model for gas-water stratified flow in deflecting and horizontal wells[J]. Journal of Oil and Gas Technology(J.JPI), 2013, 35(6): 86-92. |
[23] | 宋红伟, 郭海敏, 唐小梅. 水平井及大斜度井油水两相流动模型研究[J]. 测井技术, 2014, 38(4): 384-390. |
[23] | SONG Hongwei, GUO Haimin, TANG Xiaomei. Study on unified model for oil-water two-phase flow in horizontal and highly deviated wells[J]. Well Logging Technology, 2014, 38(4): 384-390. |
[24] | 韩丹岫, 李相方, 尹克涛, 等. 倾斜井筒气液段塞流识别与压降模型研究[J]. 西南石油大学学报(自然科学版), 2009, 31(4): 117-121. |
[24] | HAN Danxiu, LI Xiangfang, YIN Ketao, et al. Study on gas-liquid slug flow identification and pressure drop model for deviated wellbore[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2009, 31(4): 117-121. |
[25] | 郭海敏, 戴家才, 陈科贵. 生产测井原理与资料解释[M]. 北京: 石油工业出版社, 2007. |
[25] | GUO Haimin, DAI Jiacai, CHEN Kegui. Production logging principles and data interpretation[M]. Beijing: Petroleum Industry Press, 2007. |
/
〈 | 〉 |