油气藏评价与开发 >
2023 , Vol. 13 >Issue 3: 348 - 357
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2023.03.010
基于离散元法的压裂裂缝特征研究
收稿日期: 2022-03-29
网络出版日期: 2023-06-26
基金资助
四川省科技计划项目“页岩压裂的损伤力学特征研究”(2020JDJQ0059);油气藏地质及开发工程国家重点实验室(成都理工大学)开放基金资助项目“基于相场理论的页岩地层压裂裂缝三维延伸数值模型与定量调控方法研究”(PLC20210314)
Fracture characteristics based on discrete element method
Received date: 2022-03-29
Online published: 2023-06-26
为了探究弱面发育页岩压裂裂缝特征,基于三维块体离散元方法,建立考虑层理弱面和天然裂缝弱面的页岩储集层压裂裂缝扩展模型,分析了不同施工排量、压裂液黏度、层理抗拉强度和天然裂缝内聚力下的压裂裂缝特征。研究表明:高排量泵注和高压裂液黏度能够减少近井筒层理对水力裂缝的限制,增加水力裂缝穿层能力,当压裂液黏度达到10 mPa·s时,水力裂缝能够连续穿过6条层理;与天然裂缝连通的层理,其抗拉强度不是影响自身开启的主要因素;天然裂缝内聚力越大,其抗剪强度越大,开启程度越低。当井筒周围发育层理和天然裂缝时,通过提高前置液阶段排量、增大压裂液黏度,可以促使水力裂缝充分延伸;对于容易形成简单双翼裂缝的页岩储层,在前置液阶段泵注适量酸液,可以溶解天然裂缝填充物,从而达到降低天然裂缝内聚力,增加其开启程度,提高裂缝复杂度的效果。
李小刚 , 何建冈 , 杨兆中 , 易良平 , 黄刘科 , 杜博迪 , 张景强 . 基于离散元法的压裂裂缝特征研究[J]. 油气藏评价与开发, 2023 , 13(3) : 348 -357 . DOI: 10.13809/j.cnki.cn32-1825/te.2023.03.010
In order to explore the characteristics of fracturing fractures of shale with weak plane development, a fracture propagation model of shale reservoirs taking the weak plane of bedding and natural fractures into account is established by the three dimension discrete element method to analyze characteristics of fracturing fractures under different injection rates, fracturing fluid viscosity, bedding tensile strength and natural fracture cohesion. The research results show that the high-displacement injection and high fracturing fluid viscosity can reduce the restriction of near-wellbore bedding on hydraulic fractures and increase the ability of hydraulic fractures to penetrate layers. The hydraulic fractures can continuously pass through six beddings when the fracturing fluid viscosity is increased to 10 mPa·s. The tensile strength of the bedding connected to the natural fracture is not the main factor affecting its own opening. The greater the natural fracture cohesion is, the greater the natural fracture shear strength and the lower the degree of opening of natural fracture will be. When bedding and natural fractures develop near the wellbore, the hydraulic fractures can be fully extended by increasing the injection rates and the fracturing fluid viscosity in the early stage. For shale which is easy to form simple double-wing fractures, pumping an appropriate amount of acid in the early stage can dissolve the natural fracture filler, so as to reduce the natural fracture cohesion, increase its opening degree, and improve the complexity of fractures.
Key words: shale; bedding; natural fracture; fracture propagation; discrete element method
[1] | 赵金洲, 任岚, 蒋廷学, 等. 中国页岩气压裂十年: 回顾与展望[J]. 天然气工业, 2021, 41(8): 121-142. |
[1] | ZHAO Jinzhou, REN Lan, JIANG Tingxue, et al. Ten years of gas shale fracturing in China: Review and prospect[J]. Natural Gas Industry, 2021, 41(8): 121-142. |
[2] | 张烈辉, 何骁, 李小刚, 等. 四川盆地页岩气勘探开发进展、挑战及对策[J]. 天然气工业, 2021, 41(8): 143-152. |
[2] | ZHANG Liehui, HE Xiao, LI Xiaogang, et al. Shale gas exploration and development in the Sichuan Basin: Progress,challenge and countermeasures[J]. Natural Gas Industry, 2021, 41(8): 143-152. |
[3] | 邹才能, 赵群, 丛连铸, 等. 中国页岩气开发进展、潜力及前景[J]. 天然气工业, 2021, 41(1): 1-14. |
[3] | ZOU Caineng, ZHAO Qun, CONG Lianzhu, et al. Development progress,potential and prospect of shale gas in China[J]. Natural Gas Industry, 2021, 41(1): 1-14. |
[4] | 张莉娜, 刘欣, 张耀祖. 基于正交试验设计的页岩气藏压裂敏感性分析[J]. 非常规油气, 2021, 8(5): 77-86. |
[4] | ZHANG Lina, LIU Xin, ZHANG Yaozu. Fracturing sensitivity analysis of shale gas reservoir based on orthogonal experimental design[J]. Unconventional Oil & Gas, 2021, 8(5):77-86. |
[5] | 王光付, 李凤霞, 王海波, 等. 四川盆地非常规气藏地质-工程一体化压裂实践与认识[J]. 石油与天然气地质, 2022, 43(5): 1221-1237. |
[5] | WANG Guangfu, LI Fengxia, WANG Haibo, et al. Application of an integrated geology-reservoir engineering approach to fracturing in unconventional gas reservoirs, Sichuan Basin and some insights[J]. Oil & Gas Geology, 2022, 43(5): 1221-1237. |
[6] | 周庆凡. 页岩油气资源评价基本问题的讨论[J]. 石油与天然气地质, 2022, 43(1): 26-33. |
[6] | ZHOU Qingfan. Discussion on key issues of shale oil/gas resource assessment[J]. Oil & Gas Geology, 2022, 43(1): 26-33. |
[7] | 蒲春生, 郑恒, 杨兆平, 等. 水平井分段体积压裂复杂裂缝形成机制研究现状与发展趋势[J]. 石油学报, 2020, 41(12): 1734-1743. |
[7] | PU Chunsheng, ZHENG Heng, YANG Zhaoping, et al. Research status and development trend of the formation mechanism of complex fractures by staged volume fracturing in horizontal wells[J]. Acta Petrolei Sinica, 2020, 41(12): 1734-1743. |
[8] | 侯冰, 常智, 武安安, 等. 吉木萨尔凹陷页岩油密切割压裂多簇裂缝竞争扩展模拟[J]. 石油学报, 2022, 43(1): 75-90. |
[8] | HOU Bing, CHANG Zhi, WU An'an, et al. Simulation of competitive propagation of multi-fractures on shale oil reservoir multi-clustered fracturing in Jimsar sag[J]. Acta Petrolei Sinica, 2022, 43(1): 75-90. |
[9] | 付海峰, 才博, 修乃岭, 等. 含层理储层水力压裂缝高延伸规律及现场监测[J]. 天然气地球科学, 2021, 32(11): 1610-1621. |
[9] | FU Haifeng, CAI Bo, XIU Nailing, et al. The study of hydraulic fracture vertical propagation in unconventional reservoir with beddings and field monitoring[J]. Natural Gas Geoscience, 2021, 32(11): 1610-1621. |
[10] | 施振生, 赵圣贤, 赵群, 等. 川南地区下古生界五峰组-龙马溪组含气页岩岩心裂缝特征及其页岩气意义[J]. 石油与天然气地质, 2022, 43(5): 1087-1101. |
[10] | SHI Zhensheng, ZHAO Shengxian, ZHAO Qun, et al. Fractures in cores from the Lower Paleozoic Wufeng-Longmaxi shale in southern Sichuan Basin and their implications for shale gas exploration[J]. Oil & Gas Geology, 2022, 43(5): 1087-1101. |
[11] | YI L P, WAISMAN H, YANG Z Z, et al. A consistent phase field model for hydraulic fracture propagation in poroelastic media[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 372: 113396. |
[12] | YI L P, YANG C X, CHEN R, et al. Phase field model for hydraulic fracture propagation in porous medium and numerical simulation analysis of hydraulic fracture propagation in a layered reservoir[J]. Arabian Journal of Geosciences, 2021, 14(16): 1-25. |
[13] | ZHENG Y X, LIU J J, ZHANG B H. An investigation into the effects of weak interfaces on fracture height containment in hydraulic fracturing[J]. Energies, 2019, 12(17): 3245. |
[14] | 张丰收, 吴建发, 黄浩勇, 等. 提高深层页岩裂缝扩展复杂程度的工艺参数优化[J]. 天然气工业, 2021, 41(1): 125-135. |
[14] | ZHANG Fengshou, WU Jianfa, HUANG Haoyong, et al. Technological parameter optimization for improving the complexity of hydraulic fractures in deep shale reservoirs[J]. Natural Gas Industry, 2021, 41(1): 125-135. |
[15] | CHONG Z, KAREKAL S, LI X, et al. Numerical investigation of hydraulic fracturing in transversely isotropic shale reservoirs based on the discrete element method[J]. Journal of Natural Gas Science and Engineering, 2017, 46: 398-420. |
[16] | 杨兆中, 张丹, 易良平, 等. 多层叠置煤层压裂裂缝纵向扩展模型与数值模拟[J]. 煤炭学报, 2021, 46(10): 3268-3277. |
[16] | YANG Zhaozhong, ZHANG Dan, YI Liangping, et al. Longitudinal propagation model of hydraulic fracture and numerical simulation in multi-layer superimposed coalbed[J]. Journal of China Coal Society, 2021, 46(10): 3268-3277. |
[17] | SUN C, ZHENG H, LIU W D, et al. Numerical simulation analysis of vertical propagation of hydraulic fracture in bedding plane[J]. Engineering Fracture Mechanics, 2020, 232: 107056. |
[18] | TANG H Y, LIANG H P, ZHANG L H, et al. Fully 3D simulation of hydraulic fracture propagation in naturally fractured reservoirs using displacement discontinuity method[J]. SPE Journal, 2022, 27(3): 1648-1670. |
[19] | 李明耀, 贺甲元, 苏业旺. 页岩油气水力压裂的关键力学问题和数值计算方法[J]. 科技导报, 2016, 34(23): 32-42. |
[19] | LI Mingyao, HE Jiayuan, SU Yewang. Key mechanical problems and numerical methods of hydraulic fracture in shale[J]. Science & Technology Review, 2016, 34(23): 32-42. |
[20] | CUNDALL P A. Formulation of a three-dimensional distinct element model—Part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1988, 25(3): 107-116. |
[21] | HART R, CUNDALL P A, LEMOS J. Formulation of a three-dimensional distinct element model—Part II. Mechanical calculations for motion and interaction of a system composed of many polyhedral blocks[J]. International journal of rock mechanics and mining sciences & Geomechanics abstracts, 1988, 25(3): 117-125. |
[22] | 路艳军. 煤岩体积压裂机理研究[D]. 成都: 西南石油大学, 2015. |
[22] | LU Yanjun. Mechanism researches of stimulated reservoir volume in coal seams[D]. Chengdu: Southwest Petroleum University, 2015. |
[23] | HOU B, ZHANG R X, ZENG Y J, et al. Analysis of hydraulic fracture initiation and propagation in deep shale formation with high horizontal stress difference[J]. Journal of Petroleum Science and Engineering, 2018, 170: 231-243. |
[24] | HENG S, LI X Z, LIU X, et al. Experimental study on the mechanical properties of bedding planes in shale[J]. Journal of Natural Gas Science and Engineering, 2020, 76: 103161. |
[25] | 周彤, 王海波, 李凤霞, 等. 层理发育的页岩气储集层压裂裂缝扩展模拟[J]. 石油勘探与开发, 2020, 47(5): 1039-1051. |
[25] | ZHOU Tong, WANG Haibo, LI Fengxia, et al. Numerical simulation of hydraulic fracture propagation in laminated shale reservoirs[J]. Petroleum Exploration and Development, 2020, 47(5): 1039-1051. |
/
〈 | 〉 |