煤层气

保德区块煤粉产出特征及其影响要素剖析

  • 孟文辉 ,
  • 张文 ,
  • 王博洋 ,
  • 郝帅 ,
  • 王泽斌 ,
  • 潘武杰
展开
  • 1.中国石油煤层气有限责任公司,北京 100020
    2.东北石油大学非常规油气研究院,黑龙江 大庆 163318
    3.中国矿业大学资源与地球科学学院,江苏 徐州 221116
孟文辉(1989—),男,本科,工程师,主要从事煤层气井气藏动态分析及排采控制研究。地址:山西省忻州市保德县府前大街76号,邮政编码:036699。E-mail:824884475@qq.com

收稿日期: 2023-05-05

  网络出版日期: 2023-09-01

基金资助

国家自然科学基金项目“低阶煤储层煤粉产出对差异流体作用的响应及其机制”(42002186)

Analysis of characteristics of coal fine production and its influence factors in Baode block

  • Wenhui MENG ,
  • Wen ZHANG ,
  • Boyang WANG ,
  • Shuai HAO ,
  • Zebin WANG ,
  • Wujie PAN
Expand
  • 1. PetroChina Coalbed Methane Co., Ltd., Beijing 100020, China
    2. Institute of Unconventional Oil and Gas, Northeast Petroleum University, Daqing, Heilongjiang 163318, China
    3. School of Resources and Geosciences, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China

Received date: 2023-05-05

  Online published: 2023-09-01

摘要

煤粉问题在煤层气开发中日益凸显,合理控制煤粉运移与产出,是煤层气井稳产、高产的关键。目前对于保德区块煤粉运移产出规律认识不清,制约了本区部分井煤层气高效开发。基于上述问题,借助煤粉驱替物理模拟实验,探究不同地质与工程条件下煤粉产出特征,并阐明地层水流速、矿化度、气水比、有效应力等因素对其控制作用。研究表明,排水阶段较小的流速下产出煤粉量极少,裂缝中煤粉发生运移但是堆积在出口处,形成煤粉“滤饼”;当超过临界流速后,煤粉大量产出,较大幅度的压力波动能将出口处堵塞的煤粉冲出。地层水矿化度越大,携带煤粉运移能力越强;单气相流动无法有效驱替煤粉运移产出,50∶50气水比的两相流具有更强的携带煤粉的能力。随着加载在煤岩上的有效应力增加,产出液中煤粉的质量浓度不断下降,且出口端的憋压压力具有相同的下降趋势,但驱替压差在不断增加。研究结果为现场开展煤粉防治措施提供数据和理论基础。

本文引用格式

孟文辉 , 张文 , 王博洋 , 郝帅 , 王泽斌 , 潘武杰 . 保德区块煤粉产出特征及其影响要素剖析[J]. 油气藏评价与开发, 2023 , 13(4) : 441 -450 . DOI: 10.13809/j.cnki.cn32-1825/te.2023.04.005

Abstract

The issue of coal fine production is increasingly prominent in the development of coal-bed methane. Implementing appropriate measures to control the migration and production of coal fines is crucial for achieving stable and high production of coal-bed methane wells. However, the characteristics of coal migration and production in the coal seams of Baode block remain unclear, which hinders the efficient development of coal-bed methane in some wells in this area. To address the problem of coal fine production in coal-bed methane development, core flooding experiments were conducted to investigate the migration and production characteristics of coal fines concerning influencing factors such as formation water velocity, salinity, gas-water ratio, effective stress, etc. The experimental results revealed that during the drainage stage, the amount of coal fines produced at low formation water flow is minimal, with coal fines moving within fractures and accumulating at the outlet, forming a coal powder filter cake. However, when formation water flow surpasses the critical flow, a significant amount of coal fines is produced. A substantial pressure fluctuation can flush out the coal fines obstructing the outlet. Furthermore, the salinity of the formation water plays a role in carrying coal powder, with higher salinity increasing its transport capacity. While single gas phase flow is not effective in displacing the coal fine migration and production, two-phase flow with a gas-water ratio of 50∶50 exhibits a stronger ability to carry coal powder. The concentration of coal fine in the produced liquid continued to decline with the increase of the effective stress loaded on the coal, Similarly, the holding pressure at the outlet follows a downward trend, but the displacement pressure difference increases. The research findings provide essential data and a theoretical basis for implementing on-site prevention and control of coal fine production.

参考文献

[1] 姚红生, 肖翠, 陈贞龙, 等. 延川南深部煤层气高效开发调整对策研究[J]. 油气藏评价与开发, 2022, 12(4): 545-555.
[1] YAO Hongsheng, XIAO Cui, CHEN Zhenlong, et al. Adjustment countermeasures for efficient development of deep coalbed methane in southern Yanchuan CBM Field[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(4): 545-555.
[2] 张遂安, 曹立虎, 杜彩霞. 煤层气井产气机理及排采控压控粉研究[J]. 煤炭学报, 2014, 39(9): 1927-1931.
[2] ZHANG Sui’an, CAO Lihu, DU Caixia. Study on gas production mechanism, pressure control and powder control in coalbed methane wells[J]. Journal of Coal Industry, 2014, 39(9): 1927- 1931.
[3] 李智. 煤层气水平井筒煤粉迁移特征实验研究[D]. 西安: 西安科技大学, 2017.
[3] LI Zhi. Experimental study of CBM horizontal well pulverized coal migration characteristics[D]. Xi’an: Xi’an University of Science and Technology, 2017.
[4] KESHAVARZ A, YANG Y L, BADALYAN A, et al. Laboratory-based mathematical modelling of graded proppant injection in CBM reservoirs[J]. International Journal of Coal Geology, 2014, 136: 1-16.
[5] BAI T H, CHEN Z W, AMINOSSADATI S M, et al. Experimental investigation on the impact of coal fines generation and migration on coal permeability[J]. Journal of Petroleum Science and Engineering, 2017, 159: 257-266.
[6] WEI Y C, Li C, CAO D Y, et al. The effects of particle size and inorganic mineral content on fines migration in fracturing proppant during coalbed methane production[J]. Journal of Petroleum Science and Engineering, 2019, 182: 1-11.
[7] TAO S, TANG D Z, XU H, et al. Fluid velocity sensitivity of coal reservoir and its effect on coalbed methane well productivity: a case of Baode block, northeastern Ordos Basin, China[J]. Journal of Petroleum Science and Engineering, 2017, 152: 229-37.
[8] HUANG F S, KANG Y L, YOU L J, et al. Massive fines detachment induced by moving gas-water interfaces during early stage two-phase flow in coalbed methane reservoirs[J]. Fuel, 2018, 222: 193-206.
[9] 李袖臣, 张文, 吕洋, 等. 煤层气排采井防煤粉技术研究[J]. 湖北大学学报(自然科学版), 2021, 43(5): 498-501.
[9] LI Xiuchen, ZHANG Wen, LYU Yang, et al. Coal powder control technology for coalbed methane well[J]. Journal of Hubei University(Natural Science), 2021, 43(5): 498-501.
[10] 刘晓, 崔彬, 吴展. 煤层气井堵塞型递减原因分析及治理——以延川南煤层气田为例[J]. 油气藏评价与开发, 2022, 12(4): 626-632.
[10] LIU Xiao, CUI Bin, WU Zhan. Cause analysis and treatment of coal-bed gas well plugging decline: A case study of southern Yanchuan CBM Field[J]. Progress in Exploration Geophysics, 2022, 12(4): 626-632.
[11] LAN W J, WANG H X, Yang S Y, et al. Study on the migration of pulverized coal in CBM wellbore[J]. Journal of Petroleum Science and Engineering, 2017, 156: 740-747.
[12] TAO S, GAO L J, PAN Z J. Swelling of clay minerals and its effect on coal permeability and gas production: A case study of southern Qinshui Basin, China[J]. Energy Science & Engineering, 2019, 7(2): 515-528.
[13] MASSAROTTO P, IYER R S, Elma M, et al. An experimental study on characterizing coal bed methane(CBM) fines production and migration of mineral matter in coal beds[J]. Energy & fuels, 2014, 28(2): 766-773.
[14] GUO Z H, HUSSAIN F, CINAR Y. Permeability variation associated with fines production from anthracite coal during water injection[J]. International Journal of Coal Geology, 2015, 147: 46-57.
[15] 高占胜, 杨波, 刘己胜. 大佛寺井田煤层气储层伤害及其原因分析[J]. 资源与产业, 2018, 20(4): 47-51.
[15] GAO Zhansheng, YANG Bo, LIU Jisheng. CBM reservoir damage and reasons of Dafosi well field[J]. Resources & Industries, 2018, 20(4): 47-51.
[16] 刘春花, 刘新福, 周超. 煤层气井排采过程中煤粉运移规律研究[J]. 煤田地质与勘探, 2015, 43(5): 23-26.
[16] LIU Chunhua, LIU Xinfu, ZHOU Chao. Migration patterns of coal powder in coal reservoirs during the well drainage[J]. Coal Geology & Exploration, 2015, 43(5): 23-26.
[17] 张双斌, 苏现波, 林晓英. 煤层气井排采过程中压裂裂缝导流能力的伤害与控制[J]. 煤炭学报, 2014, 39(1): 124-128.
[17] ZHANG Shuangbin, SU Xianbo, LIN Xiaoying. Controlling the damage of conductivity of hydraulic factures during the process of drainage in coalbed methane well[J]. Journal of China Coal Society, 2014, 39(1) :124-128.
[18] 姚海鹏, 于东方, 李玲, 等. 内蒙古地区典型煤储层吸附特征[J]. 岩性油气藏, 2021, 33(2): 1-8.
[18] YAO Haipeng, YU Dongfang, LI Ling, et al. Adsorption characteristics of typical coal reservoirs in Inner Mongolia[J]. Lithologic Reservoirs, 2021, 33(2): 1-8.
[19] 朱志良, 高小明. 陇东煤田侏罗系煤层气成藏主控因素与模式[J]. 岩性油气藏, 2022, 34(1): 86-94.
[19] ZHU Zhiliang, GAO Xiaoming. Main controlling factors and models of Jurassic coalbed methane accumulation in Longdong coalfield[J]. Lithologic Reservoirs, 2022, 34(1): 86-94.
[20] 赵帅. 微气泡对支撑裂缝中煤粉运移堵塞规律影响实验研究[D]. 西安: 西安石油大学, 2021.
[20] ZHAO Shuai. Experimental study on the influence of pore structure on seepage characteristics in tight sandstone[D]. Xi'an: Xi'an Shiyou University, 2021.
[21] 皇凡生, 董长银, 康毅力, 等. 移动气泡诱发裂隙内煤粉启动机制与防控措施[J]. 中国石油大学学报(自然科学版), 2021, 45(4): 100-107.
[21] HUANG Fansheng, DONG Changyin, KANG Yili, et al. Mechanisms and control measures of incipient motion of coal fines induced by moving gas bubbles in coalbed fractures[J]. Journal of China University of Petroleum(Edition of Natural Science), 2021, 45(4): 100-107.
[22] 高玉巧, 郭涛, 何希鹏, 等. 贵州省织金地区煤层气多层合采层位优选[J]. 石油实验地质, 2021, 43(2): 227-232.
[22] GAO Yuqiao, GUO Tao, HE Xipeng, et al. Optimization of multi-layer commingled coalbed methane production in Zhijin area, Guizhou province[J]. Petroleum Geology & Experiment, 2021, 43(2): 227-232.
[23] 慕甜, 马东民, 陈跃, 等. 煤层气井多相流条件下不同粒径煤粉启动-运移规律[J]. 煤炭科学技术, 2020, 48(5): 188-196.
[23] MU Tian, MA Dongmin, CHEN Yue, et al. Start-migration law of coal powder with different particle sizes under multi-phase flow conditions in coalbed methane wells[J]. Coal Science and Technology, 2020, 48(5): 188-196.
[24] 周宇. 二甲醚掺混低发热量煤层气混合气体的互换性研究[J]. 石油与天然气化工, 2021, 50(1): 58-65.
[24] Zhou Yu. Study on the interchangeability for mixtures of dimethyl ether and low calorific value coalbed methane[J]. Chemical Engineering of Oil & Gas, 2021, 50(1): 58-65.
[25] 张雷, 郝帅, 张伟, 等. 中低煤阶煤层气储量复算及认识——以鄂尔多斯盆地东缘保德煤层气田为例[J]. 石油实验地质, 2020, 42(1): 147-155.
[25] ZHANG Lei, HAO Shuai, ZHANG Wei, et al. Recalculation and understanding of middle and low rank coalbed methane reserves: a case study of Baode Coalbed Methane Field on the eastern edge of Ordos Basin[J]. Petroleum Geology & Experiment, 2020, 42(1): 147-155.
[26] 刘岩, 苏雪峰, 张遂安. 煤粉对支撑裂缝导流能力的影响特征及其防控[J]. 煤炭学报, 2017, 42(3): 687-693.
[26] LIU Yan, SU Xuefeng, ZHANG Sui’an. Influencing characteristics and control of coal powder to proppant fracture conductivity[J]. Journal of China Coal Society, 2017, 42(3): 687-693.
[27] 陈晨, 王克. 鄂尔多斯盆地东缘煤层气储层物性特征规律研究[J]. 中外能源, 2022, 27(4): 15-21.
[27] CHEN Chen, WANG Ke. Study on physical characteristics of coalbed methane reservoirs in eastern margin of Ordos Basin[J]. Sino-Global Energy, 2022, 27(4): 15-21.
[28] 刘迈杰. 保德区块煤储层物性及气体吸附解吸特性研究[D]. 北京: 中国地质大学(北京), 2021.
[28] LIU Maijie. Study on the physical properties of coal reservoir and its adsorption and desorption characteristics in Baode block[D]. Beijing: China University of Geosciences(Beijing), 2021.
[29] 于春雷. 保德区块中低阶煤煤层气田资源特征及开发实践研究[D]. 北京: 中国石油大学(北京), 2017.
[29] YU Chunlei. Resource characteristics and development practice research of middle and low rank coalbed methane in Baode block[D]. Beijing: China University of Petroleum(Beijing), 2017.
[30] 薛培. 保德区块煤层气开发过程中储层渗透率动态变化研究[D]. 北京: 中国矿业大学(北京), 2015.
[30] XUE Pei. Study on dynamic changes of coal reservoir permeability in Baode block during coalbed methane recovery[D]. Beijing: China University of Mining and Technology(Beijing), 2015.
[31] 温声明, 文桂华, 李星涛, 等. 地质工程一体化在保德煤层气田勘探开发中的实践与成效[J]. 中国石油勘探, 2018, 23(2): 69-75.
[31] WEN Shengming, WEN Guihua, LI Xingtao, et al. Application and effect of geology-engineering integration in the exploration and development of Baode CBM field[J]. China Petroleum Exploration, 2018, 23(2): 69-75.
[32] 田文广, 汤达祯, 王志丽, 等. 鄂尔多斯盆地东北缘保德地区煤层气成因[J]. 高校地质学报, 2012, 18(3): 479-484.
[32] TIAN Wenguang, TANG Dazhen, WANG Zhili, et al. Origin of coalbed methane in Baode, northeastern Ordos Basin[J]. Geological Journal of China Universities, 2012, 18(3): 479-484.
[33] ZHANG W, HE Y X, ZHANG Q F, et al. Study on the effect of salinity and water content on CBM adsorption/desorption characteristics of coal reservoir in Baode block[J]. Geofluids, 2022, 5055273.
[34] 赵振宇. 滇东黔西煤层气压裂完井缝内煤粉运移规律实验研究[D]. 北京: 中国石油大学(北京), 2018.
[34] ZHAO Zhenyu. Experimental study of the pulverized coal particle migration in hydraulic fracture in east Yunnan & west Guizhou region[D]. Beijing: China University of Petroleum(Beijing), 2018.
[35] AWAN F U R, KESHAVARZ A, AKHONDZADEH H, et al. Optimizing the dispersion of coal fines using sodium dodecyl benzene sulfonate[C]// Paper URTEC-198250-MS presented at the Asia Pacific Unconventional Resources Technology Conference, Brisbane, Australia, November 2019.
[36] GUO Z H, HUSSAIN F, CINAR Y. Physical and analytical modelling of permeability damage in bituminous coal caused by fines migration during water production[J]. Journal of Natural Gas Science and Engineering, 2016, 35: 331-346.
[37] 刘子亮, 魏迎春, 张琦, 等. 水化学性质对支撑裂缝中煤粉运移影响的物理模拟实验[J/OL]. 煤炭学报, 2023[2022-11-16]. https://kns.cnki.net/kcms/detail//11.2190.TD.20221116.1635.006.html.
[37] LIU Ziliang, WEI Yingchun, ZHANG Qi, et al. Physical simulation experiment of the effect of hydrochemical properties on the migration of coal fines in propped fractures[J/OL]. Journal of China Coal Society, 2023[2022-11-16]. https://kns.cnki.net/kcms/detail//11.2190.TD.20221116.1635.006.html.
文章导航

/