综合研究

盐水层CO2封存潜力评价及适应性评价方法研究进展

  • 赵玉龙 ,
  • 杨勃 ,
  • 曹成 ,
  • 张烈辉 ,
  • 周翔 ,
  • 黄晨直 ,
  • 芮祎鸣 ,
  • 李金龙
展开
  • 1.油气藏地质及开发工程国家重点实验室,四川 成都 610500
    2.西南石油大学,四川 成都 610500
    3.中国石油西南油气田公司天然气研究院,四川 成都 610213
    4.中国石油吉林油田公司勘探开发研究院,吉林 松原 138000
赵玉龙(1987—),男,博士,研究员,从事非常规油气藏开发、试井分析及CO2捕集、利用与封存(CCUS)等研究。地址:四川省成都市新都区新都大道8号,邮政编码:610500。E-mail: 373104686@qq.com

收稿日期: 2022-07-07

  网络出版日期: 2023-09-01

基金资助

中国博士后科学基金第71批面上资助一等“含 H2S/SO2 的 CO2—咸水—泥岩作用机制及其对盖层封闭性演化的影响”(2022M710116)

Research progress of evaluation of CO2 storage potential and suitability assessment indexes in saline aquifers

  • Yulong ZHAO ,
  • Bo YANG ,
  • Cheng CAO ,
  • Liehui ZHANG ,
  • Xiang ZHOU ,
  • Chenzhi HUANG ,
  • Yiming RUI ,
  • Jinlong LI
Expand
  • 1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu, Sichuan 610500, China
    2. Southwest Petroleum University, Chengdu, Sichuan 610500, China
    3. Natural Gas Research Institute of Southwest Oil & Gas Field Company, PetroChina, Chengdu, Sichuan 610213, China
    4. Exploration and Development Research Institute of Jilin Oilfield Company, PetroChina, Songyuan, Jilin 138000, China

Received date: 2022-07-07

  Online published: 2023-09-01

摘要

盐水层CO2封存是可行的技术部署方案之一,也是中长期CO2深度减排的主要方式。针对盐水层封存潜力的评估要求,对CO2地质封存的4种封存机理进行了系统阐述,并基于封存机理对沉积盆地中盐水层封存潜力的计算方法进行了梳理分析。通过总结归纳国内外盐水层封存评价体系,建立了涵括安全、技术、经济和社会环境4类评价指标层的盐水层封存适宜性评价指标体系,利用层次分析法确定了各指标的权重。对于具有开放构造和丰富水文地质作用的盐水层,推荐考虑残余气封存和溶解封存结合的方法评估封存潜力,盐水层CO2地质封存适宜性评价指标体系的建立为开展全国性的CO2封存适宜性评价工作提供参考。

本文引用格式

赵玉龙 , 杨勃 , 曹成 , 张烈辉 , 周翔 , 黄晨直 , 芮祎鸣 , 李金龙 . 盐水层CO2封存潜力评价及适应性评价方法研究进展[J]. 油气藏评价与开发, 2023 , 13(4) : 484 -494 . DOI: 10.13809/j.cnki.cn32-1825/te.2023.04.010

Abstract

CO2 storage in saline aquifers is one of the feasible technical deployment schemes, and it is also the main approach to reduce CO2 emission in the medium and long term. To meet the assessment requirements of the storage potential in saline aquifers, four CO2 geological storage mechanisms are systematically expounded. Based on the storage mechanism, an evaluation index system for the suitability of CO2 geological storage in saline aquifers is established, including four evaluation index layers of safety, technology, economy, and social environment. The weight of each evaluation index factor is calculated using the analytic hierarchy process. For saline aquifers with an open structure and rich hydrogeology, it is recommended to consider the combination of residual trapping and solubility trapping to evaluate CO2 storage potential. The CO2 geological storage suitability evaluation index system of saline aquifers provides a reference for conducting the national CO2 storage suitability evaluation.

参考文献

[1] IPCC. Summary for policymakers[R]. Cambridge: Cambridge University Press, 2018.
[2] IPCC. Carbon dioxide capture and storage[R]. Cambridge: Cambridge University Press, 2005.
[3] 蔡博峰, 李琦, 张贤, 等. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2021)——中国 CCUS 路径研究[R]. 北京: 生态环境部环境规划院, 2021.
[3] CAI Bofeng, LI Qi, ZHANG Xian, et al. Annual report of carbon dioxide capture, utilization and storage(CCUS) in China(2021)—China CCUS path research[R]. Beijing: Environmental Planning Institute of the Ministry of Ecology and Environment, 2021.
[4] 朱佩誉. CO2在咸水层的地质封存及应用进展[J]. 洁净煤技术, 2021, 27(S2): 33-38.
[4] ZHU Peiyu. Review on CO2 geological storage in saline formations[J]. Clean Coal Technology, 2021, 27(S2): 33-38.
[5] ZHAO X L, LIAO X W, WANG W F, et al. The CO2 storage capacity evaluation: Methodology and determination of key factors[J]. Journal of the Energy Institute, 2014, 87(4): 297-305.
[6] BENTHAM M, KIRBY M. CO2 storage in saline aquifers[J]. Oil & Gas Science and Technology, 2005, 60(3): 559-567.
[7] KOIDE H, TAZAKI Y, NOGUCHI Y, et al. Subterranean containment and long-term storage of carbon dioxide in unused aquifers and in depleted natural gas reservoirs[J]. Energy Conversion & Management, 1992, 33(5-8): 619-626.
[8] GOODMAN A, HAKALA A, BROMHAL G, et al. U.S. DOE methodology for the development of geologic storage potential for carbon dioxide at the national and regional scale[J]. International Journal of Greenhouse Gas Control, 2011, 5(4): 952-965.
[9] BACHU S. Review of CO2 storage efficiency in deep saline aquifers[J]. International Journal of Greenhouse Gas Control, 2015, 40: 188-202.
[10] BACHU S, BONIJOLY D, BRADSHAW J, et al. CO2 storage capacity estimation: Methodology and gaps[J]. International Journal of Greenhouse Gas Control, 2007, 1(4): 430-443.
[11] 刁玉杰, 朱国维, 金晓琳, 等. 四川盆地理论CO2地质利用与封存潜力评估[J]. 地质通报, 2017, 36(6): 1088-1095.
[11] DIAO Yujie, ZHU Guowei, JIN Xiaolin, et al. Theoretical potential assessment of CO2 geological utilization and storage in the Sichuan Basin[J]. Geological Bulletin of China, 2017, 36(6): 1088-1095.
[12] 师庆三. 碳中和约束下新疆塔里木, 准噶尔, 吐哈盆地CO2理论储存潜力评估[J]. 环境与可持续发展, 2021, 46(5): 99-105.
[12] SHI Qingsan. Evaluation of theoretical CO2 storage potential capacity in Tarim, Junggar, and Turpan-Hagar basins of Xinjiang under carbon neutrality constraints[J]. Environment and Sustainable Development, 2021, 46(5): 99-105.
[13] 李琦, 魏亚妮, 刘桂臻. 中国沉积盆地深部CO2地质封存联合咸水开采容量评估[J]. 南水北调与水利科技, 2013, 11(4): 93-96.
[13] LI Qi, WEI Ya’ni, LIU Guizhen. Assessment of CO2 storage capacity and saline water development in sedimentary basins of China[J]. South-to-North Water Transfers and Water Science & Technology, 2013, 11(4): 93-96.
[14] 刘廷, 马鑫, 刁玉杰, 等. 国内外CO2地质封存潜力评价方法研究现状[J]. 中国地质调查, 2021, 8(4): 101-108.
[14] LIU Ting, MA Xin, DIAO Yujie, et al. Research status of CO2 geological storage potential evaluation methods at home and abroad[J]. Geological Survey of China, 2021, 8(4): 101-108.
[15] PRATHER C A, BRAY J M, SEYMOUR J D, et al. NMR study comparing capillary trapping in Berea sandstone of air, carbon dioxide, and supercritical carbon dioxide after imbibition of water[J]. Water Resources Research, 2016, 52(2): 713-724.
[16] 胡智凯, 李铱, 索瑞厅, 等. CO2纯度对咸水层碳封存过程中残余水的影响[J]. 高校地质学报, 2023, 29(1): 57-69.
[16] HU Zhikai, LI Yi, SUO Ruiting, et al. Effects of CO2 purity on residual water during carbon sequestration in deep saline aquifers[J]. Geological Journal of China Universities, 2023, 29(1): 57-69.
[17] CHEN H, YU H, ZHOU B, et al. Storage mechanism and dynamic characteristics of CO2 dissolution in saline aquifers[J]. Energy & Fuels, 2023, 37(5): 3875-3885.
[18] BACHU S, ADAMS J J. Sequestration of CO2 in geological media in response to climate change: Capacity of deep saline aquifers to sequester CO2 in solution[J]. Energy Conversion & Management, 2003, 44(20): 3151-3175.
[19] 李小春, 刘延锋, 白冰, 等. 中国深部咸水含水层CO2储存优先区域选择[J]. 岩石力学与工程学报, 2006, 25(5): 963-963.
[19] LI Xiaochun, LIU Yanfeng, BAI Bing, et al. Ranking and screening of CO2 saline aquifer storage zones in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(5): 963-963.
[20] 项力, 杨章贤. 安徽省沉积盆地咸水含水层二氧化碳地质储存潜力研究[J]. 安徽地质, 2016, 26(4): 291-293.
[20] XIANG Li, YANG Zhangxian. Study on the geological storing capacity of CO2 in brine aquifer in the sedimentary basin in Anhui Province[J]. Geology of Anhui, 2016, 26(4): 291-293.
[21] 杨章贤, 汪定圣, 董迎春. 安徽省二氧化碳地质储存潜力评价[J]. 西部探矿工程, 2022, 30(11): 107-113.
[21] YANG Zhangxian, WANG Dingsheng, DONG Yingchun. Evaluation of geological storage potential of carbon dioxide in Anhui Province[J]. West-China Exploration Engineering, 2022, 30(11): 107-113.
[22] 于立松, 张卫东, 吴双亮, 等. 二氧化碳在深部盐水层中溶解封存规律的研究进展[J]. 新能源进展, 2015, 3(1): 75-80.
[22] YU Lisong, ZHANG Weidong, WU Shuangliang, et al. Research on dissolved sequestration of CO2 in deep saline aquifers[J]. Advances in New and Renewable Energy, 2015, 3(1): 75-80.
[23] DUAN Z Z, SUN R, ZHU C, et al. An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2 000 bar[J]. Chemical Geology, 2003, 193(3-4): 257-271.
[24] ROSENBAUER R J, KOKSALAN T, PALANDRI J L. Experimental investigation of CO2-brine-rock interactions at elevated temperature and pressure: Implications for CO2 sequestration in deep-saline aquifers[J]. Fuel Processing Technology, 2005, 86(14-15): 1581-1597.
[25] GIAMMAR D E, BRUANT JR R G, PETERS C A. Forsterite dissolution and magnesite precipitation at conditions relevant for deep saline aquifer storage and sequestration of carbon dioxide[J]. Chemical Geology, 2005, 217(3-4): 257-276.
[26] XU T F, APPS J A, PRUESS K. Numerical simulation of CO2 disposal by mineral trapping in deep aquifers[J]. Applied Geochemistry, 2004, 19(6): 917-936.
[27] 李万伦, 陈晶, 贾凌霄, 等. 玄武岩CO2地质封存研究进展[J]. 地质论评, 2022, 68(2): 648-657.
[27] LI Wanlun, CHEN Jing, JIA Lingxiao, et al. Research progress of CO2 geological sequestration in basalts[J]. Geological Review, 2022, 68(2): 648-657.
[28] DING S, YI X, JIANG H, et al. CO2 storage capacity estimation in oil reservoirs by solubility and mineral trapping[J]. Applied Geochemistry, 2018, 89: 121-128.
[29] 叶航, 郝宁, 刘琦. CO2咸水层封存关键参数及其实验表征技术研究进展[J]. 发电技术, 2022, 43(4): 562-573.
[29] YE Hang, HAO Ning, LIU Qi. Review on key parameters and characterization technology of CO2 sequestration mechanism in saline aquifers[J]. Power Generation Technology, 2022, 43(4): 562-573.
[30] 杨永智, 沈平平, 宋新民, 等. 盐水层温室气体地质埋存机理及潜力计算方法评价[J]. 吉林大学学报:地球科学版, 2009, 39(4): 744-748.
[30] YANG Yongzhi, SHEN Pingping, SONG Xinmin, et al. Greenhouse gas geo-sequestration mechanism and capacity evaluation in aquifer[J]. Journal of Jilin University, 2009, 39(4): 744-748.
[31] 李琴, 李治平, 胡云鹏, 等. 深部盐水层CO2埋藏量计算方法研究与评价[J]. 特种油气藏, 2011, 18(5): 6-10.
[31] LI Qin, LI Zhiping, HU Yunpeng, et al. Assessment of CO2 storage calculation for deep saline aquifers[J]. Special Oil and Gas Reservoirs, 2011, 18(5): 6-10.
[32] 徐威, 苏小四, 杜尚海, 等. 松辽盆地中央坳陷区深部咸水层二氧化碳储存潜力评价及其不确定性分析[J]. 第四纪研究, 2011, 31(3): 483-490.
[32] XU Wei, SU Xiaosi, DU Shanghai, et al. Capacity assessment and uncertainty analysis of CO2 storage in deep saline aquifer in the central depression of Songliao basin[J]. Quaternary Sciences, 2011, 31(3): 483-490.
[33] 巫润建, 李国敏, 黎明, 等. 松辽盆地咸含水层埋存CO2储存容量初步估算[J]. 工程地质学报, 2009, 17(1): 100-104.
[33] WU Runjian, LI Guomin, LI Ming, et al. Estimation of CO2 storage capacity in deep saline aquifer in Songliao Sedimentary Basin[J]. Journal Engineering Geology, 2009, 17(1): 100-104.
[34] 张冰, 梁凯强, 王维波, 等. 鄂尔多斯盆地深部咸水层CO2有效地质封存潜力评价[J]. 非常规油气, 2019, 6(3): 15-20.
[34] ZHANG Bing, LIANG Kaiqiang, WANG Weibo, et al. Evaluation of effective CO2 geological sequestration potential of deep saline aquifer in Ordos Basin[J]. Unconventional Oil & Gas, 2019, 6(3): 15-20.
[35] 李松, 李义连, 喻英, 等. 咸水层中二氧化碳地质封存有效系数的探究——以江汉盆地为例[J]. 安全与环境工程, 2015, 22(1): 82-89.
[35] LI Song, LI Yilian, YU Ying, et al. Research on the effective coefficient of CO2 geological sequestration in salinity aquifer: A case study of Jianghan Basin[J]. Safety and Environmental Engineering, 2015, 22(1): 82-89.
[36] 郭建强, 文冬光, 张森琦, 等. 中国二氧化碳地质储存潜力评价与示范工程[J]. 中国地质调查, 2015, 2(4): 36-46.
[36] GUO Jianqiang, WEN Donguang, ZHANG Senqi, et al. Potential evaluation and demonstration project of CO2 geological storage in China[J]. Geological Survey of China, 2015, 2(4): 36-46.
[37] BACHU S. Screening and ranking of sedimentary basins for sequestration of CO2in geological media in response to climate change[J]. Environmental Geology, 2003, 44(3): 277-289.
[38] WEI N, LI X C, WANG Y, et al. A preliminary sub-basin scale evaluation framework of site suitability for onshore aquifer-based CO2 storage in China[J]. International Journal of Greenhouse Gas Control, 2013, 12: 231-246.
[39] 杨国强, 苏小四, 杜尚海, 等. 松辽盆地CO2地质储存适宜性评价[J]. 地球学报, 2011, 32(5): 570-580.
[39] YANG Guoqiang, SU Xiaosi, DU Shanghai, et al. Suitability assessment of geological sequestration of CO2 in Songliao Basin[J]. Acta Geoscientica Sinica, 2011, 32(5): 570-580.
[40] 李甫成, 张杨, 张晓娟, 等. 深部咸水层CO2地质储存适宜性评价方法研究[J]. 冰川冻土, 2014, 36(3): 649-660.
[40] LI Fucheng, ZHANG Yang, ZHANG Xiaojuan, et al. Suitability evaluation method of CO2 geological sequestration in deep saline aquifers[J]. Journal of Glaciology and Geocryology, 2014, 36(3): 649-660.
[41] 杨霄翼, 刘延锋, 徐连三. 深部盐水层CO2地质埋存适宜性评价指标体系及其应用[J]. 安全与环境工程, 2014, 21(5): 71-77.
[41] YANG Xiaoyi, LIU Yanfeng, XU Liansan. Construction and application of comprehensive evaluation index system for the suitability of CO2 geological storage in deep saline aquifer[J]. Safety and Environmental Engineering, 2014, 21(5): 71-77.
[42] 郑长远, 白刚刚, 师延霞, 等. 西宁盆地级(D级)CO2地质储存区域适宜性研究[J]. 青海大学学报(自然科学版), 2016, 34(4): 1-8.
[42] ZHENG Changyuan, BAI Ganggang, SHI Yanxia, et al. Geological storage suitability of carbon dioxide in Xining basin (level D)[J]. Journal of Qinghai University, 2016, 34(4): 1-8.
[43] 杨红, 赵习森, 康宇龙, 等. 鄂尔多斯盆地CO2地质封存适宜性与潜力评价[J]. 气候变化研究进展, 2019, 15(1): 95-102.
[43] YANG Hong, ZHAO Xisen, KANG Yulong, et al. Evaluation on geological sequestration suitability and potential of CO2 in Ordos Basin[J]. Climate Change Research, 2019, 15(1): 95-102.
[44] OLDENBURG C M. Screening and ranking framework for geologic CO2 storage site selection on the basis of health, safety, and environmental risk[J]. Environmental Geology, 2008, 54(8): 1687-1694.
[45] RAMíREZ A, HAGEDOORN S, KRAMERS L, et al. Screening CO2 storage options in the Netherlands[J]. International Journal of Greenhouse Gas Control, 2010, 4(2): 367-380.
[46] 刁玉杰, 张森琦, 郭建强, 等. 深部咸水层二氧化碳地质储存场地选址储盖层评价[J]. 岩土力学, 2012, 33(8): 2422-2428.
[46] DIAO Yujie, ZHANG Senqi, GUO Jianqiang, et al. Reservoir and caprock evaluation of CO2 geological storage site selection in deep saline aquifers[J]. Rock and Soil Mechanics, 2012, 33(8): 2422-2428.
[47] 刁玉杰, 张森琦, 郭建强, 等. 深部咸水层CO2地质储存地质安全性评价方法研究[J]. 中国地质, 2011, 38(3): 786-792.
[47] DIAO Yujie, ZHANG Senqi, GUO Jianqiang, et al. Study of the geological safety evaluation method of CO2 geological storage in deep saline aquifer[J]. Geology in China, 2011, 38(3): 786-792.
[48] 郭建强, 张森琦, 刁玉杰, 等. 深部咸水层CO2地质储存工程场地选址技术方法[J]. 吉林大学学报:地球科学版, 2011, 41(4): 1084-1091.
[48] GUO Jianqiang, ZHANG Senqi, DIAO Yujie, et al. Site selection method of CO2 geological storage in deep saline aquifers[J]. Journal of Jilin University, 2011, 41(4): 1084-1091.
[49] 孟庆辉, 刘朝安, 贾宁, 等. 深部咸含水层CO2地质埋存厂址筛选方法研究[J]. 电力勘测设计, 2013, 36(3): 18-23.
[49] MENG Qinghui, LIU Chao’an, JIA Ning, et al. Research on site selection method of CO2[J]. Electric Power Survey & Design, 2013, 36(3): 18-23.
[50] LYU T X, WAN J H, ZHENG Y J, et al. Optimization of CO2 geological storage sites based on regional stability evaluation: A case study on geological storage in Tianjin, China[J]. Frontiers in Earth Science, 2022, 10: 955455.
[51] 中国21世纪议程管理中心. 中国二氧化碳地质封存选址指南研究[M]. 北京: 地质出版社, 2012.
[51] The Administrative Center for China’s Agenda 21. Guidebook for selection of CO2 geological storage project sites in China[M]. Beijing: Geological Publishing House, 2012.
[52] 曹默雷, 陈建平. CO2深部咸水层封存选址的地质评价[J]. 地质学报, 2022, 96(5): 1868-1882.
[52] CAO Molei, CHEN Jianping. The selection geological evaluation of the CO2 storage of the deep saline aquifer[J]. Acta Geologica Sinica, 2022, 96(5): 1868-1882.
[53] 张炳江. 层次分析法及其应用案例[M]. 北京: 电子工业出版社, 2014.
[53] ZHANG Bingjiang. AHP and application cases[M]. Beijing: Publishing House of Electronics Industry, 2014.
[54] HE H J, TIAN C, JIN G, et al. Evaluating the CO2 geological storage suitability of coal-bearing sedimentary basins in China[J]. Environmental Monitoring and Assessment, 2020, 192(7): 1-13.
[55] LI F C, ZHANG Y, JIA X F, et al. A method for evaluating the suitability of CO2 geological storage in deep saline aquifers[J]. Acta Geologica Sinica, 2016, 90(5): 1838-1851.
文章导航

/