综合研究

柴达木盆地三湖坳陷第四系泥岩气藏成藏模式

  • 宋德康 ,
  • 刘晓雪 ,
  • 邵泽宇 ,
  • 姜振学 ,
  • 侯栗丽 ,
  • 王昱超 ,
  • 贺世杰 ,
  • 刘冀蓬
展开
  • 1.中国石油青海油田分公司勘探开发研究院,甘肃 酒泉 736202
    2.中国石油大学(北京),北京 102249
宋德康(1992—),男,本科,工程师,现从事油气勘探工作。地址:甘肃省酒泉市敦煌市七里镇昆仑中路青海油田勘探开发研究院,邮政编码:736202。E-mail:sdkyjyqh@petrochina.com.cn

收稿日期: 2022-03-02

  网络出版日期: 2023-09-01

基金资助

国家自然科学基金面上项目“陆相页岩储层岩石组构和孔隙机构特征及其对含气性的控制机理”(41872135)

Accumulation mode of Quaternary mudstone gas reservoir in Sanhu Depression, Qaidam Basin

  • Dekang SONG ,
  • Xiaoxue LIU ,
  • Zeyu SHAO ,
  • Zhenxue JIANG ,
  • Lili HOU ,
  • Yuchao WANG ,
  • Shijie HE ,
  • Jipeng LIU
Expand
  • 1. Research Institute of Exploration and Development, Qinghai Oilfield Company, PetroChina, Jiuquan, Gansu 736202, China
    2. China University of Petroleum(Beijing), Beijing 102249, China

Received date: 2022-03-02

  Online published: 2023-09-01

摘要

研究三湖坳陷生物成因泥岩气藏形成的条件和成藏模式,有利于完善生物气成藏机理与富集规律,对指导第四系泥岩气藏勘探开发具有重要理论和现实意义。以三湖坳陷第四系泥岩为研究对象,通过可溶解有机碳分析、孔隙度测定、色谱质谱分析等实验,明确了三湖坳陷第四系泥岩气藏成藏条件,建立了第四系泥岩气藏的成藏模式。研究结果表明,三湖坳陷第四系泥岩可溶解有机碳含量高,有机质类型为草本腐殖型,气温极低、气候干旱,有利于生物成因气的生成;三湖坳陷第四系具有高孔低渗的特征,发育大量微纳米孔隙,为生物成因气的赋存提供了大量孔隙空间;气体运移方式以菲克扩散和滑脱流动为主,由于泥岩自封闭作用,生成的生物成因气在原位聚集成藏。在晚喜马拉雅构造运动影响下,泥岩自封闭性被破坏,受浮力作用,生物成因气向上运移,在相邻的构造高部位泥岩中重新聚集成藏,在纵向上与常规砂岩生物气藏相互叠置。

本文引用格式

宋德康 , 刘晓雪 , 邵泽宇 , 姜振学 , 侯栗丽 , 王昱超 , 贺世杰 , 刘冀蓬 . 柴达木盆地三湖坳陷第四系泥岩气藏成藏模式[J]. 油气藏评价与开发, 2023 , 13(4) : 495 -504 . DOI: 10.13809/j.cnki.cn32-1825/te.2023.04.011

Abstract

The study of formation conditions and accumulation mode of biogenetic mudstone gas reservoir in Sanhu Depression is essential for understanding the accumulation mechanisms and enrichment rules of such gas reservoirs. It holds significant theoretical and practical implications for guiding the exploration and development of Quaternary mudstone gas reservoirs. This research focuses on the Quaternary mudstone in the Sanhu Depression as the main subject. To determine the reservoir formation conditions and establish the accumulation mode, various experiments were conducted, including soluble organic carbon analysis, porosity determination, and chromatography-mass spectrometry analysis. The results reveal that the presence of high levels of soluble organic carbon and herbaceous humic organic matter, along with cold and dry conditions, create favorable conditions for the generation of biogenetic mudstone gas. The Quaternary formation in Sanhu Depression has the characteristics of high porosity and low permeability with numerous micro-nano pores that provide ample space for the occurrence of biogenetic gas. Gas flow primarily occurs through Fick diffusion and slip flow. The self-sealing effect of mudstone leads to the in-situ accumulation of biogenetic gas. However, during the late Himalayan tectonic movement, the gas containment of mudstone is disrupted. As a result of buoyancy, the gas migrates upward and accumulates in high parts of the mudstone, which are adjacent to the gas-generating center, and are superimposed longitudinally with sandstone biogenetic gas reservoirs.

参考文献

[1] CHAPELLE F H, O’NEILL K, BRADLEY P M, et al. A hydrogen-based subsurface microbial community dominated by methanogens[J]. Nature, 2002, 415(6869): 312-315.
[2] 孙春岩, 赵浩, 贺会策, 等. 洞庭盆地生物气地球化学勘探及资源远景评价[J]. 物探与化探, 2018, 42(1): 1-13.
[2] SUN Chunyan, ZHAO Hao, HE Huice, et al. Geochemical exploration and resource potential evaluation of biogenic gas in Dongting Lake Basin[J]. Geophysical and Geochemical Exploration, 2018, 42(1): 1-13.
[3] 杨松岭, 张科, 陈景阳, 等. 全球生物气藏分布特征及成藏条件[J]. 天然气工业, 2019, 39(8): 10-24.
[3] YANG Songling, ZHANG Ke, CHEN Jingyang, et al. Distribution characteristics and hydrocarbon accumulation conditions of biogenic gas reservoirs all over the world[J]. Natural Gas Industry, 2019, 39(8): 10-24.
[4] 付锁堂, 关平, 张道伟. 柴达木盆地近期勘探工作思考[J]. 天然气地球科学, 2012, 23(5): 813-819.
[4] FU Suotang, GUAN Ping, ZHANG Daowei. Consideration about recent oil ang gas exploration of Qaidam Basin[J]. Natural Gas Geoscience, 2012, 23(5): 813-819.
[5] 焦贵浩, 张林, 李剑, 等. 柴达木盆地三湖地区生物气资源潜力及勘探方向[J]. 中国石油勘探, 2009, 14(2): 1-6.
[5] JIAO Guihao, ZHANG Lin, LI Jian, et al. Resources potential and exploration direction of biogas in Sanhu Region in Qaidam Basin[J]. China Petroleum Exploration, 2009, 14(2): 1-6.
[6] 史晓辉, 倪祥龙, 李红哲, 等. 地震属性在预测生物气中的应用——以柴达木盆地三湖地区台南构造为例[J]. 石油天然气学报, 2014, 36(1): 50-54.
[6] SHI Xiaohui, NI Xianglong, LI Hongzhe, et al. Application of seismic attributes in detecting biogas——By taking Tainan structure of Sanhu Area in Qaidam Basin for example[J]. Journal of Oil and Gas Technology, 2014, 36(1): 50-54.
[7] 帅燕华, 张水昌, 苏爱国, 等. 柴达木盆地三湖地区产甲烷作用仍在强烈进行的地球化学证据[J]. 中国科学D辑(地球科学), 2009, 32(4): 734-740.
[7] SHUAI Yanhua, ZHANG Shuichang, SU Aiguo, et al. Geochemical evidence for strong ongoing methanogenesis in Sanhu region of Qaidam Basin[J]. Scientia Sinica(Terrae), 2009, 32(4): 734-740.
[8] CHEN Z H, SHUAI Y H, OSADETZ K, et al. Comparison of biogenic gas fields in the Western Canada Sedimentary Basin and Qaidam Basin: Implications for essential geological controls on large microbial gas accumulations[J]. Bulletin of Canadian Petroleum Geology, 2015, 63(1): 33-52.
[9] SHUAI Y H, ZHANG S C, MA D D, et al. Quaternary biogenic gases in the Qaidam Basin, Western China[J]. Bulletin of Canadian Petroleum Geology, 2015, 63(1): 75-83.
[10] 单俊峰, 鞠俊成, 张文伟, 等. 柴达木盆地三湖坳陷盐壳遮挡型生物气成藏模式[J]. 天然气工业, 2019, 39(8): 25-32.
[10] SHAN Junfeng, JU Juncheng, ZHANG Wenwei, et al. Hydrocarbon accumulation patterns of salt crust covered biogenic gas reservoirs in the Sanhu Depression, Qaidam Basin[J]. Natural Gas Industry, 2019, 39(8): 25-32.
[11] YIN M S, HUANG H P, CHENG L. Molecular fingerprints in shales from the Sanhu biogenic gas fields in eastern Qaidam Basin, NW China: Evidence of biodegradation of shale organic matter[J]. Marine and Petroleum Geology, 2021, 133: 105289.
[12] 杨梅. 柴达木盆地三湖坳陷新近纪—第四纪古环境演变[D]. 兰州: 兰州大学, 2018.
[12] YANG Mei. Paleoenvironmental evolution in the neogene-quaternary period of the Sanhu Depression, Qaidam Basin[D]. Lanzhou: Lanzhou University, 2018.
[13] 张英, 李剑, 张奎, 等. 柴达木盆地三湖地区第四系生物气源岩中可溶有机质丰度及地质意义[J]. 地质学报, 2007, 86(12): 1716-1722.
[13] ZHANG Ying, LI Jian, ZHANG Kui, et al. Organic matter abundance in Quaternary source rocks and its application assessment of biogenic gas in Sanhu Lake Area, Qaidam Basin[J]. Acta Geologica Sinica, 2007, 86(12): 1716-1722.
[14] 刘建, 徐莹, 赵智鹏, 等. 生物气源岩评价指标体系研究[J]. 海洋地质前沿, 2015, 31(1): 16-23.
[14] LIU Jian, XU Ying, ZHAO Zhipeng, et al. Research of the evaluation indicator system for biogenic gas source rocks[J]. Marine Geology Frontiers, 2015, 31(1): 16-23.
[15] 戚厚发, 关德师, 钱贻伯, 等. 中国生物气成藏条件[M]. 北京: 石油工业出版社, 1997.
[15] QI Houfa, GUAN Deshi, QIAN Yibo, et al. Conditions of biogas accumulation in China[M]. Beijing: Petroleum Industry Press, 1997.
[16] 何登发, 李德生, 童晓光, 等. 中国沉积盆地油气立体综合勘探论[J]. 石油与天然气地质, 2021, 42(2): 265-284.
[16] He Dengfa, Li Desheng, Tong Xiaoguang, et al. Integrated 3D hydrocarbon exploration in sedimentary basins of China[J]. Oil & Gas Geology, 2021, 42(2): 265-284.
[17] 王伟明, 卢双舫, 田伟超, 等. 吸附水膜厚度确定致密油储层物性下限新方法——以辽河油田大民屯凹陷为例[J]. 石油与天然气地质, 2016, 37(1): 135-140.
[17] WANG Weiming, LU Shuangfang, TIAN Weichao, et al. A new method to determine porosity and permeability cutoffs of tight oil reservoirs by using thickness of adsorption water film: A case study from the Damintun Sag, Liaohe oilfield[J]. Oil & Gas Geology, 2016, 37(1): 135-140.
[18] FISSELL W H, CONLIS A T, DATTA S, et al. High Knudsen number fluid flow at near-standard tempera tureand pressure conditions using precision nanochannels[J]. Microfluidics and Nanofluidics, 2011, 10(1): 425-433.
[19] 李明宅, 张洪年. 生物气成藏规律研究[J]. 天然气工业, 1997, 17(2): 18-22.
[19] LI Mingzhai, ZHANG Hongnian. Research on the formation of biogas reservoir[J]. Natural Gas Industry, 1997, 17(2): 18-22.
[20] 李明诚, 李剑, 张凤敏, 等. 柴达木盆地三湖地区第四系生物气运聚成藏的定量研究[J]. 石油学报, 2009, 30(6): 810-815.
[20] LI Mingcheng, LI Jian, ZHANG Fengmin, et al. Quantitative research on biogas migration-accumulation and pool-forming in the Quaternary of Sanhu area in Qaidam Basin[J]. Acta Petrolei Sinica, 2009, 30(6): 810-815.
[21] 李明宅, 张洪年, 郜建军. 生物气的生成演化模式和初次运移特征[J]. 石油实验地质, 1995, 33 (2): 147-155.
[21] LI Mingzhai, ZHANG Hongnian, GAO Jianjun. Generation and evolution models and primary migration features of biogases[J]. Petroleum Geology & Experiment, 1995, 33(2): 147-155.
文章导航

/