综合研究

新疆油田玛湖砂岩储层自悬浮支撑剂现场试验

  • 任洪达 ,
  • 董景锋 ,
  • 高靓 ,
  • 刘凯新 ,
  • 张敬春 ,
  • 尹淑丽
展开
  • 1.中国石油新疆油田公司工程技术研究院,新疆 克拉玛依 834000
    2.新疆页岩油勘探开发重点实验室,新疆 克拉玛依 834000
    3.中国石油新疆油田油气储运公司,新疆 克拉玛依 834000
任洪达(1989—),男,硕士,工程师,主要从事油田压裂材料方面的研究。地址:新疆克拉玛依市胜利路87号,邮政编码:834000。E-mail:renhonda@petrochina.com.cn

收稿日期: 2023-04-14

  网络出版日期: 2023-09-01

基金资助

新疆维吾尔自治区天山英才计划项目“油气储层改造新型支撑剂研发与应用”(2022TSTCJC0028);中国石油天然气股份公司科技项目“油田用化工新材料产品开发”(2020E-28)

Field test of self-suspending proppant at Mahu sandstone reservoir in Xinjiang Oilfield

  • Hongda REN ,
  • Jingfeng DONG ,
  • Jing GAO ,
  • Kaixin LIU ,
  • Jingchun ZHANG ,
  • Shuli YIN
Expand
  • 1. Engineering Technology Research Institute, Xinjiang Oilfield Company, CNPC, Karamay, Xinjiang 834000, China
    2. Key Laboratory of Shale Oil Exploration and Development in Xinjiang, Karamay, Xinjiang 834000, China
    3. Oil and Gas Storage Transportation Company of Xinjiang Oilfield, Karamay, Xinjiang 834000, Chian

Received date: 2023-04-14

  Online published: 2023-09-01

摘要

目前大排量滑溜水压裂工艺已成为非常规油气资源开发的主要手段,由于滑溜水携砂能力有限,支撑剂在裂缝中沉降速度快、运移距离短,储层改造效果有待进一步提升。自悬浮支撑剂表面包裹的水溶性材料可提升其在滑溜水或清水中的悬浮效果,增大裂缝支撑体积。实验结果表明,自悬浮支撑剂基本技术指标满足标准要求,20 %砂比时在自来水中全悬浮时间小于40 s,且在90 ℃条件下能够稳定悬浮2 h以上,混合液破胶彻底。新疆油田在玛湖砂岩储层开展现场试验,实现清水连续携砂,最高砂质量浓度480 kg/m3,施工压力平稳。自悬浮支撑剂清水压裂技术在新疆油田的成功应用为后期油气资源工艺技术的选择提供参考。

本文引用格式

任洪达 , 董景锋 , 高靓 , 刘凯新 , 张敬春 , 尹淑丽 . 新疆油田玛湖砂岩储层自悬浮支撑剂现场试验[J]. 油气藏评价与开发, 2023 , 13(4) : 513 -518 . DOI: 10.13809/j.cnki.cn32-1825/te.2023.04.013

Abstract

Currently, the large-displacement slickwater fracturing process has become the primary method for developing unconventional oil and gas resource. However, the efficiency of this process is limited by the sand carrying capacity of slickwater, which results in rapid settlement and short migration distance of the proppant within the fractures, leading to a need for further improvement in the reservoir transformation effect. To address this issue, a water-soluble material is applied to coat the surface of the self-suspending proppant, enhancing its suspension effect in slickwater or clear water and thereby increasing the crack support volume. The self-suspending proppant meets the required technical standards, showing a total suspension time of less than 40 seconds in tap water at a 20 % sand ratio, and maintaining stable suspension for over two hours at 90 ℃ even during thorough mixing. In a practical on-site test at Mahu sandstone reservoir in Xinjiang Oilfield, continuous sand carrying was achieved using clean water, reaching a maximum sand concentration of 480 kg/m3 while maintaining stable construction pressure. The successful application of self-suspending proppant clear water fracturing technology in Xinjiang oilfield serves as a valuable reference for the selection of oil and gas resource technology in the future stage.

参考文献

[1] 梁天成, 才博, 蒙传幼, 等. 水力压裂支撑剂性能对导流能力的影响[J]. 断块油气田, 2021, 28(3): 403-407.
[1] LIANG Tiancheng, CAI Bo, MENG Chuanyou, et al. The effect of proppant performance of hydraulic fracturing on conductivity[J]. Fault-Block Oil & Gas Field, 2021, 28(3): 403-407.
[2] 张静娴, 许冬进, 廖锐全. 砂砾岩致密油储层支撑剂导流能力预测[J]. 大庆石油地质与开发, 2019, 38(6): 149-154.
[2] ZHANG Jingxian, XU Dongjin, LIAO Ruiquan. Prediction of the conductivity of the proppant in glutenite tight oil reservoirs[J]. Petroleum Geology & Oilfield Development in Daqing, 2019, 38(6): 149-154.
[3] 周佳佳, 邹洪岚, 朱大伟, 等. 低弹性模量碳酸盐岩储层裂缝导流能力实验研究[J]. 石油钻采工艺, 2020, 42(6): 752-756.
[3] ZHOU Jiajia, ZOU Honglan, ZHU Dawei, et al. Experimental study on the fracture conductivity in the carbonate reservoirs with low elastic modulus[J]. Oil Drilling & Production Technology, 2020, 42(6): 752-756.
[4] 孟磊, 史华, 周长静, 等. 致密气藏压裂用支撑剂导流能力评价及优化[J]. 西安石油大学学报(自然科学版), 2022, 37(5): 59-64.
[4] MENG Lei, SHI Hua, ZHOU Changjing, et al. Evaluation and optimization of conductivity of fracturing proppants for tight gas reservoirs[J]. Journal of Xi'an Shiyou University(Natural Science Edition), 2022, 37(5): 59-64.
[5] 王欣桐, 吕照, 施雷庭, 等. 吉木萨尔页岩油藏人工裂缝导流能力动态变化规律[J]. 科学技术与工程, 2022, 22(1): 136-141.
[5] WANG Xintong, LYU Zhao, SHI Leiting, et al. Dynamic change law of artificial fracture conductivity in Jimusaer shale reservoir[J]. Science Technology and Engineering, 2022, 22(1): 136-141.
[6] 杨能宇, 梁天成, 邱金平, 等. 压裂支撑剂性能测试方法不确定度评定[J]. 新疆石油天然气, 2022, 18(3): 38-43.
[6] YANG Nengyu, LIANG Tiancheng, QIU Jinping, et al. uncertainty analysis for the testing methods of fracturing proppant performance[J]. Xinjiang Oil & Gas, 2022, 18(3): 38-43.
[7] CIEZOBKA J, COURTIER J, WICKER J. Hydraulic fracturing test site(HFTS)-Project overview and summary of results[C]// Paper URTEC-2937168-MS presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference, Houston, Texas, USA, July 2018.
[8] GOLDSTEIN B, VANZEELANDeeland A. Self-suspending prropant transport technology increases stimulated reservoir volume and reduces prropant pack and formation damage[C]// Paper SPE-174867-MS presented at the SPE Annual Technical Conference and Exhibition, Houston, Texas, USA, September 2015.
[9] SEDILLOS L, CORP C, SAXENA J, et al. Slickwater, hybrid, self-suspending proppant: Practical use of data analytics to determine hydraulic fracture fluids[C]// Paper SPE-195304-MS presented at the SPE Western Regional Meeting, San Jose, California, USA, April 2019.
[10] 王磊. 牛庄洼陷官17井区沙四段页岩油自悬浮支撑剂压裂试验[J]. 油气藏评价与开发, 2022, 12(4): 684-689.
[10] WANG Lei. Self-suspension proppant fracturing test of shale oil in the fourth member of Shahejie Formation in Guan-17 well area, Niuzhuang Sag[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(4): 684-689.
[11] 董林芳, 陈新阳. 自悬浮支撑剂的性能评价与现场应用[J]. 石油钻探技术, 2018, 46(6): 90-94.
[11] DONG Linfang, CHEN Xinyang. Performance evaluation and field application of a self-suspending proppant[J]. Petroleum Drilling Technology, 2018, 46(6): 90-94.
[12] 张敬春, 任洪达, 俞天喜, 等. 压裂支撑剂研究与应用进展[J]. 新疆石油天然气, 2023, 19(1): 27-34.
[12] ZHANG Jingchun, REN Hongda, YU Tianxi, et al. Research and application progress of fracturing proppants[J]. Xinjiang Oil & Gas, 2023, 19(1): 27-34.
[13] 徐辉, 宋敏, 孙秀芝, 等. 新型耐特高温抗水解型聚合物驱油性能[J]. 油气地质与采收率, 2021, 28(4): 101-106.
[13] XU Hui, SONG Min, SUN Xiuzhi, et al. Study on oil displacement performance of a new type of polymer with ultra-high temperature and hydrolysis resistance[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(4): 101-106.
[14] 程东. 体积压裂液黏土稳定剂的研制与评价[D]. 大庆: 东北石油大学, 2015.
[14] CHENG Dong. Synthesis and evaluation of clay stabilizer for volume fracturing fluid[D]. Daqing: Northeast Petroleum University, 2015.
[15] 胡渤, 王芳, 高宝玉, 等. 油田配聚污水水质对聚合物溶液黏度的影响及其机理[J]. 山东大学学报(工学版), 2016, 46(1): 80-85.
[15] HU Bo, WANG Fang, GAO Baoyu, et al. Study on the effect and mechanism of oilfield produced water quality on reducing the viscosity of polymer solution[J]. Journal of Shandong University (Engineering Science), 2016, 46(1): 80-85.
[16] 陈彦广, 李丹丹, 宋华, 等. 金属阳离子对部分水解聚丙烯酰胺溶液黏度影响的研究进展[J]. 化学工业与工程技术, 2013, 34(6): 36-41.
[16] CHEN Yanguang, LI Dandan, SONG Hua, et al. Research progress of the effect of metal cations on the viscosity of polyacrylamide solution[J]. Journal of Chemical Industry& Engineering, 2013, 34(6): 36-41.
[17] 薛俊杰, 郭东红, 管保山, 等. 减阻剂在页岩气压裂中的研究及应用[J]. 精细与专用化学品, 2021, 29(5): 14-22.
[17] XUE Junjie, GUO Donghong, GUAN Baoshan, et al. Research and application of friction reducer for fracturing of shale gas reservoirs[J]. Fine and Specialty Chemicals, 2021, 29(5):14-22.
[18] YANG B, ZHAO J Z, MAO J C, et al. Review of friction reducers used in slickwater fracturing fluids for shale gas reservoirs[J]. Journal of Natural Gas Science and Engineering, 2019, 62: 302-313.
文章导航

/