油气藏评价与开发 >
2023 , Vol. 13 >Issue 5: 581 - 590
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2023.05.005
川西坳陷须家河组二段裂缝发育特征及形成主控因素——以合兴场气田为例
收稿日期: 2023-05-15
网络出版日期: 2023-11-01
Development characteristics of fractures in the second member of Xujiahe Formation in Hexingchang Gas Field, western Sichuan Depression and their main control factors of formation: A case study of Hexingchang Gas Field
Received date: 2023-05-15
Online published: 2023-11-01
川西坳陷合兴场气田须家河组二段(以下简称须二段)砂岩为超低孔、超低渗致密砂岩储层,裂缝较为发育且类型多样,裂缝的发育程度对天然气的运移、成藏及产能具有重要影响。为了优化研究区的勘探开发,综合利用岩心观察、薄片观察、成像测井分析、裂缝充填物包裹体分析等,对须二段裂缝发育特征及控制因素开展了研究。研究区的裂缝按照成因可分为构造裂缝、成岩裂缝和异常高压裂缝3大类,对应的发育时期分别为印支晚期、燕山中晚期和喜马拉雅期。构造裂缝具有裂缝延伸长、宽度大、充填程度较低的特征;成岩裂缝以层理缝为主,发育少量缝合线;异常高压裂缝发育较少,与生烃增压有关。在此基础上进一步明确了裂缝发育主控因素,构造裂缝的发育程度主要受构造变形、断裂、岩层厚度和相变等多方面因素的影响;成岩缝的发育程度主要受岩石相和岩层厚度的影响;异常高压缝发育程度主要受生烃增压的影响。结合研究区须二段构造样式和岩性组合,建立了须二段裂缝成因模式,研究区须二段的裂缝发育区在构造转折端、南北向断层附近的单层砂岩厚度适中带(砂泥互层、厚砂薄泥型)、南北向岩相变化带、异常压力发育区。
张庄 , 章顺利 , 何秀彬 , 谢丹 , 刘妍鷨 . 川西坳陷须家河组二段裂缝发育特征及形成主控因素——以合兴场气田为例[J]. 油气藏评价与开发, 2023 , 13(5) : 581 -590 . DOI: 10.13809/j.cnki.cn32-1825/te.2023.05.005
The Hexingchang gas field of the western Sichuan Depression is an ultra-low porosity and ultra-low permeability tight sandstone reservoir, with well-developed and diverse types of fractures. The degree of fracture development plays a pivotal role in influencing on the migration, reservoir formation, and productivity of natural gas. In order to guide the exploration and development of the area, a comprehensive study was conducted to examine the development characteristics and underlying factors controlling fractures within the second member of Xujiahe Formation. This investigation drew upon a range of analytical techniques, including core observation, thin section analysis, imaging logging, and the examination of fracture filling inclusions. The fractures in the research area can be divided into three categories based on their genesis: structural fractures, diagenetic fractures, and abnormally high pressure fractures. There are three stages of development of structural fractures, corresponding to the late Indosinian period, mid late Yanshan period, and Himalayan period. Structural fractures have the characteristics of long extension, large width, and low filling degree of fractures; The diagenetic fractures are mainly bedding fractures, with a small amount of sutures developed; The development of abnormally high pressure fractures is relatively rare, which is related to hydrocarbon generation and pressurization. Building upon this foundation, the main controlling factors for the development of fractures were further clarified. The degree of structural fracture development is primarily influenced by a multitude of factors, including structural deformation, fractures, rock facies, rock layer thickness, and phase transformation; The development degree of diagenetic fractures is primarily influenced by rock facies and rock layer thickness; The development degree of abnormally high pressure fractures is chiefly influenced by hydrocarbon generation and pressurization. Based on the structural style and lithological combination of the second member of Xujiahe Formation in the research area, a fracture genesis model has been established. The fracture development area of the second member of Xujiahe Formation in the research area is located at the structural turning point, near the north-south trending fault, with a moderate thickness of single layer sandstone(sand mud interbedding, thick sand thin mud type), a north-south trending lithofacies change zone, and an abnormal pressure development area.
[1] | OLSON J E, LAUBACH S E, LANDER R H. Natural fracture characterization in tight gas sandstones: Integrating mechanics and diagenesis[J]. AAPG Bulletin, 2009, 93(11): 1535-1549. |
[2] | GONG L, SU X C, GAO S, et al. Characteristics and formation mechanism of natural fractures in the tight gas sandstones of Jiulongshan gas field, China[J]. Journal of Petroleum Science and Engineering, 2019, 175: 1112-1121. |
[3] | LYU W Y, ZENG L B, ZHANG B J, et al. Influence of natural fractures on gas accumulation in the Upper Triassic tight gas sandstones in the northwestern Sichuan Basin, China[J]. Marine and Petroleum Geology, 2017, 83: 60-72. |
[4] | 谢刚平, 朱宏权, 叶素娟, 等. 四川盆地叠覆型致密砂岩气区地质特征与评价方法[M]. 北京: 科学出版社, 2018. |
[4] | XIE Gangping, ZHU Hongquan, YE Sujuan, et al. Geological characteristics and evaluation methods of superimposed tight sandstone gas reservoirs in the Sichuan Basin[M]. Beijing: Science Press, 2018. |
[5] | 邓虎成, 周文, 周秋媚, 等. 新场气田须二气藏天然裂缝有效性定量表征方法及应用[J]. 岩石学报, 2013, 29(3): 1087-1097. |
[5] | DENG Hucheng, ZHOU Wen, ZHOU Qiumei, et al. Quantification characterization of the valid natural fractures in the 2^(nd) Xu Member, Xinchang gas field[J]. Acta Petrologica Sinica, 2013, 29 (3): 1087-1097. |
[6] | 李伟, 王雪柯, 赵容容, 等. 川西前陆盆地上三叠统须家河组致密砂岩气藏超压体系形成演化与天然气聚集关系[J]. 天然气工业, 2022, 42(1): 25-39. |
[6] | LI Wei, WANG Xueke, ZHAO Rongrong, et al. Formation and evolution of overpressure system in tight sandstone gas reservoir of Xujiahe Formation of Upper Triassic in the Western Sichuan foreland basin and its relationship with natural gas accumulation[J]. Natural Gas Industry, 2022, 42(1): 25-39. |
[7] | 吴小奇, 周小进, 陈迎宾, 等. 四川盆地川西坳陷上三叠统须家河组烃源岩分子地球化学特征[J]. 石油实验地质, 2022, 44(5): 854-865. |
[7] | WU Xiaoqi, ZHOU Xiaojin, CHEN Yingbin, et al. Molecular characteristics of source rocks in Upper Triassic Xujiahe Formation, western Sichuan Depression, Sichuan Basin[J]. Petroleum Geology & Experiment, 2022, 44(5): 854-865. |
[8] | 李王鹏, 刘忠群, 胡宗全, 等. 四川盆地川西坳陷新场须家河组二段致密砂岩储层裂缝发育特征及主控因素[J]. 石油与天然气地质, 2021, 42(4): 884-897. |
[8] | LI Wangpeng, LIU Zhongqun, HU Zongquan, et al. Characteristics of and main factors controlling the tight sandstone reservoir fractures in the 2nd member of Xujiahe Formation in Xinchang area,Western Sichuan depression,Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(4): 884-897. |
[9] | 商晓飞, 王鸣川, 李蒙. 基于Fault Likelihood属性分区标定的裂缝预测与三维地质建模——以川西坳陷新场气田须二段气藏为例[J]. 东北石油大学学报, 2022, 46(4): 62-76. |
[9] | SHANG Xiaofei, WANG Mingchuan, LI Meng. Fracture prediction and 3D geological modeling based on partition calibration of Fault Likelihood attribute: A case study of the 2nd member of Xujiahe Formation in Xinchang Gas Field,West Sichuan depression,Sichuan Basin[J]. Journal of Northeast Petroleum University, 2022, 46(4): 62-76. |
[10] | 刘振峰, 刘忠群, 郭元岭, 等. “断缝体”概念、地质模式及其在裂缝预测中的应用——以四川盆地川西坳陷新场地区须家河组二段致密砂岩气藏为例[J]. 石油与天然气地质, 2021, 42(4): 973-980. |
[10] | LIU Zhenfeng, LIU Zhongqun, GUO Yuanling, et al. Concept and geological model of fault-fracture reservoir and their application in seismic fracture prediction:A case study on the Xu 2 Member tight sandstone gas pool in Xinchang area,western Sichuan Depression in Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(4): 973-980. |
[11] | 赵兰. 致密砂岩储层微裂缝发育特征及对物性的影响——以杭锦旗地区十里加汗区带为例[J]. 油气藏评价与开发, 2022, 12(2): 285-291. |
[11] | ZHAO Lan. Development characteristics of microfractures in tight sandstone reservoir and its influence on physical properties: A case study of Shiligiahan zone in Hangjinqi[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(2): 285-291. |
[12] | 孙意博, 杨永剑, 操延辉, 等. 龙门山前带沙溪庙组储层发育特征及主控因素分析[J]. 石油地质与工程, 2020, 34(2): 19-22. |
[12] | SUN Yibo, YANG Yongjian, CAO Yanhui, et al. Reservoir development features and the controlling factors of Jurassic Shaximiao Formation in piedmont zone of Longmen mountain[J]. Petroleum Geology & Engineering, 2020, 34(2): 19-22. |
[13] | 郭迎春, 庞雄奇, 陈冬霞, 等. 川西坳陷中段须二段致密砂岩储层致密化与相对优质储层发育机制[J]. 吉林大学学报(地球科学版), 2012, 42(S2): 21-32. |
[13] | GUO Yingchun, PANG Xiongqi, CHEN Dongxia, et al. Densification of tight gas sandstones and formation mechanism of relatively high-quality reservoir in the Second Member of the Xujiahe Formation,Western Sichuan depression[J]. Journal of Jilin University(Earth Science Edition), 2012, 42(S2): 21-32. |
[14] | 李国欣, 田军, 段晓文, 等. 大幅提高超深致密砂岩气藏采收率对策与实践——以塔里木盆地克拉苏气田为例[J]. 天然气工业, 2022, 42(1): 93-101. |
[14] | LI Guoxin, TIAN Jun, DUAN Xiaowen, et al. Measures and practice for improving the recovery factor of ultradeep tight sandstone gas reservoirs: A case study of Kelasu Gas Field, Tarim Basin[J]. Natural Gas Industry, 2022, 42(1): 93-101. |
[15] | 姚茂堂, 袁学芳, 黄龙藏, 等. 高温高压裂缝性致密砂岩气藏水锁伤害及解除[J]. 石油与天然气化工, 2021, 50(4): 96-99. |
[15] | YAO Maotang, YUAN Xuefang, HUANG Longcang, et al. Study on water lock damage and release of high temperature and high pressure fractured tight sandstone gas reservoir[J]. Chemical Engineering of Oil & Gas, 2021, 50(4): 96-99. |
[16] | 曾联波, 吕文雅, 徐翔, 等. 典型致密砂岩与页岩层理缝的发育特征、形成机理及油气意义[J]. 石油学报, 2022, 43(2): 180-191. |
[16] | ZENG Lianbo, LYU Wenya, XU Xiang, et al. Development characteristics,formation mechanism and hydrocarbon significance of bedding fractures in typical tight sandstone and shale[J]. Acta Petrolei Sinica, 2022, 43(2): 180-191. |
[17] | ZHANG C, ZHU D Y, LUO Q, et al. Major factors controlling fracture development in the Middle Permian Lucaogou Formation tight oil reservoir, Junggar Basin, NW China[J]. Journal of Asian Earth Sciences, 2017, 146: 279-295. |
[18] | COBBOLD P R, ZANELLA A, RODRIGUES N, et al. Bedding-parallel fibrous veins(beef and cone-in-cone): Worldwide occurrence and possible significance in terms of fluid overpressure, hydrocarbon generation and mineralization[J]. Marine and Petroleum Geology, 2013, 43: 1-20. |
[19] | ROBERTS S J, NUNN J A. Episodic fluid expulsion from geopressured sediments[J]. Marine and Petroleum Geology, 1995, 12: 195-204. |
[20] | MAUBEUGE F, LERCHE I. Geopressure evolution and hydrocarbon genera-tion in a north Indonesian basin: Two-dimensional quantitative mode-lling[J]. Marine and Petroleum Geology, 1994, 11(1): 104-115. |
[21] | 刘俊州, 韩磊, 时磊, 等. 致密砂岩储层多尺度裂缝地震预测技术——以川西XC地区为例[J]. 石油与天然气地质, 2021, 42(3): 747-754. |
[21] | LIU Junzhou, HAN Lei, SHI Lei, et al. Seismic prediction of tight sandstone reservoir fractures in XC area,western Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(3): 747-754. |
[22] | 吕文雅, 曾联波, 陈双全, 等. 致密低渗透砂岩储层多尺度天然裂缝表征方法[J]. 地质论评, 2021, 67(2): 543-556. |
[22] | LYU Wenya, ZENG Lianbo, CHEN Shuangquan, et al. Characterization methods of multi-scale natural fractures in tight and low-permeability sandstone reservoirs[J]. Geological Review, 2021, 67(2): 543-556. |
[23] | 邹雨, 王国建, 卢丽, 等. 纳米孔隙中页岩气扩散模拟实验和数学模型分析[J]. 石油实验地质, 2021, 43(5): 844-854. |
[23] | ZOU Yu, WANG Guojian, LU Li, et al. Simulation experiment and mathematical model analysis for shale gas diffusion in nano-scale pores[J]. Petroleum Geology & Experiment, 2021, 43(5): 844-854. |
[24] | 毛哲, 曾联波, 刘国平, 等. 准噶尔盆地南缘侏罗系深层致密砂岩储层裂缝及其有效性[J]. 石油与天然气地质, 2020, 41(6): 1212-1221. |
[24] | MAO Zhe, ZENG Lianbo, LIU Guoping, et al. Characterization and effectiveness of natural fractures in deep tight sandstones at the south margin of the Junggar Basin, northwestern China[J]. Oil & Gas Geology, 2020, 41(6): 1212-1221. |
/
〈 | 〉 |