致密气

川西坳陷侏罗系隐蔽河道精细刻画技术及应用

  • 李孟桥 ,
  • 叶泰然 ,
  • 丁蔚楠 ,
  • 刘兴艳
展开
  • 1.中国石化西南油气分公司勘探开发研究院,四川 成都 610041
    2.中国石化西南油气分公司开发管理部,四川 成都 610041
李孟桥(1970—),男,硕士,工程师,主要从事地震资料综合解释研究、复杂地区构造成图工作。地址:四川省成都市高新区吉泰路688号中国石化西南油气分公司勘探开发研究院,邮政编码:610041。E-mail:limengqiao.xnyq@sinopec.com

收稿日期: 2023-05-19

  网络出版日期: 2023-11-01

基金资助

中国石化油田勘探开发事业部先导项目“中江气田地震资料连片目标处理解释及潜力评价”(YTBXD-XN20210-6)

Fine characterization technique of concealed channel and its application in the Jurassic Formation of western Sichuan Depression

  • Mengqiao LI ,
  • Tairan YE ,
  • Weinan DING ,
  • Xingyan LIU
Expand
  • 1. Research Institute of Exploration and Development, Sinopec Southwest China Oil & Gas Company, Chengdu, Sichuan 610041, China
    2. Development Management Department, Sinopec Southwest China Oil & Gas Company, Chengdu, Sichuan 610041, China

Received date: 2023-05-19

  Online published: 2023-11-01

摘要

川西坳陷ZJ、XC、SF等气田的侏罗系气藏陆相砂岩储层致密,主要发育于三角洲平原—前缘分流河道中。物性相对较差的③类储层与围岩波阻抗叠置严重,往往形成中弱反射特征,地球物理特征隐蔽,精细刻画隐蔽河道分布是重要攻关方向。开展储层岩石物理特征分析及AVO(振幅随偏移距变化特征)道集正演,明确了不同类型储层与AVO类型之间的关系,确立了FN(远或近偏移距)叠加方法,在道集优化处理基础上,优选远或近道优势偏移距叠加,隐蔽河道识别能力明显提升。利用体分频像素成像技术开展隐蔽河道精细刻画,河道成像效果明显改善。技术应用准确落实了隐蔽河道分布,精细刻画出河道的外形及边界,发现多条新河道,并被实钻所证实,拓展了新的勘探开发阵地。

本文引用格式

李孟桥 , 叶泰然 , 丁蔚楠 , 刘兴艳 . 川西坳陷侏罗系隐蔽河道精细刻画技术及应用[J]. 油气藏评价与开发, 2023 , 13(5) : 591 -599 . DOI: 10.13809/j.cnki.cn32-1825/te.2023.05.006

Abstract

The sandstone reservoirs in the Jurassic formation of gas fields such as ZJ, XC, and SF in western Sichuan Depression are characterized by their tight nature and are primarily situated within delta plain-frontal distributary channels. These reservoirs often pose a unique challenge in terms of geophysical analysis due to the significant impedance contrast between the type ③ reservoir and the surrounding rock formations. Therefore, the precise characterization of concealed channel distribution is a crucial focus for expanding exploration and development efforts. In this study, the rock physics characteristics of reservoirs and forward modeling of AVO(Amplitude Versus Offset) gathers were conducted to determine the relationship between different reservoir types and AVO responses. Furthermore, a method known as the FN stacking method was developed. By optimizing the processing of gathers and selecting far/near offset stacking, the identification capability of concealed channels was significantly enhanced. This technology accurately reveals the distribution of hidden channels, precisely traces their shape and boundaries, and has successfully discovered new channels that have been confirmed through actual drilling, thus expanding new exploration and development fronts.

参考文献

[1] 杨克明, 朱宏权. 川西叠覆型致密砂岩气区地质特征[J]. 石油实验地质, 2013, 35(1): 1-8.
[1] YANG Keming, ZHU Hongquan. Geological characteristics of superposed tight sandstone gas-bearing areas in western Sichuan[J]. Petroleum Geology & Experiment, 2013, 35(1): 1-8.
[2] 谢刚平, 叶素娟, 田苗. 川西坳陷致密砂岩气藏勘探开发实践新认识[J]. 天然气工业, 2014, 34(1): 6-15.
[2] XIE Gangping, YE Sujuan, TIAN Miao. New understandings of exploration and development practices in tight sandstone gas reservoirs in western Sichuan Depression[J]. Natural Gas Industry, 2014, 34(1): 6-15.
[3] 林伟强, 张林, 李光帅, 等. 开发地震技术在南堡油田产能建设中的应用[J]. 石油地质与工程, 2022, 36(4): 87-92.
[3] LIN Weiqiang, ZHANG Lin, LI Guangshuai, et al. Application of development seismic technology in productivity construction of Nanpu oilfield[J]. Petroleum Geology & Engineering, 2022, 36(4): 87-92.
[4] 唐建明. 川西坳陷致密非均质气藏储层空间展布刻划[J]. 天然气工业, 2002, 22(4): 19-23.
[4] TANG Jianming. Describing the space distribution of the heterogeneous tight gas reservoirs in west Sichuan Depression[J]. Natural Gas Industry, 2002, 22(4): 19-23.
[5] 毕俊凤, 顾汉明, 刘书会, 等. 河道砂体地震响应特征及影响因素分析——以垦东1地区馆陶组上段河道砂为例[J]. 石油物探, 2013, 52(1): 97-103.
[5] BI Junfeng, GU Hanming, LIU Shuhui, et al. Analysis on seismic response characteristics of channel sands and its influence factors: Case study of Upper Guantao Formation in KD1 area[J]. Geophysical Prospecting for Petroleum, 2013, 52(1): 97-103.
[6] 吴朝容, 段文燊. 川西坳陷 XS地区河道砂体预测研究[J]. 石油天然气报, 2011, 33(11): 81-84.
[6] WU Chaorong, DUAN Wenseng. Prediction of channel sandstone in XS Area of western Sichuan Depression[J]. Journal of Oil and Gas Technology, 2011, 33(11): 81-84.
[7] 邵绪鹏, 刘振峰, 刘忠群, 等. 川西坳陷新场地区须二段断缝体地震预测与地质发育模式[J]. 油气地质与采收率, 2022, 29(4): 1-11.
[7] SHAO Xupeng, LIU Zhenfeng, LIU Zhongqun, et al. Seismic prediction and geological development mode of fault-fracture bodies in 2nd Member of Xujiahe Formation in Xinchang area of western Sichuan Depression[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(4): 1-11.
[8] 刘伟, 尹成, 王敏, 等. 河流相砂泥岩薄互层基本地震属性特征研究[J]. 石油物探, 2014, 53(4): 468-476.
[8] LIU Wei, YIN Cheng, WANG Min, et al. Study on the characteristics of basic seismic attributes in fluvial sand-shale interbedded layers[J]. Geophysical Prospecting for Petroleum, 2014, 53(4): 468-476.
[9] 陈恭洋, 陈玲, 朱洁琼, 等. 地震属性分析在河流相储层预测中的应用[J]. 西南石油大学学报(自然科学版), 2012, 34(3): 1-8.
[9] CHEN Gongyang, CHEN Ling, ZHU Jieqiong, et al. Application of seismic attributes analysis fluvial reservoir to prediction[J]. Journal of Southwest Petroleum University(Natural Science Edition), 2012, 34(3): 1-8.
[10] 王世瑞, 王树平, 狄帮让, 等. 基于地震属性特征的河道砂体预测方法[J]. 石油地球物理勘探, 2009, 44(3): 304-313.
[10] WANG Shirui, WANG Shuping, DI Bangrang, et al. Prediction of channel sand body based on seismic attributes[J]. Oil Geophysical Prospecting, 2009, 44(3): 304-313.
[11] 叶泰然, 苏锦义, 刘兴艳. 分频解释技术在川西砂岩储层预测中的应用[J]. 石油物探, 2008, 47(1): 72-76.
[11] YE Tairan, SU Jinyi, LIU Xingyan. Application of seismic frequency division interpretation technology in predicting continental sandstone reservoir in the west of Sichuan province[J]. Geophysical Prospecting for Petroleum, 2008, 47(1): 72-76.
[12] 李骞, 张钰祥, 李滔, 等. 基于数字岩心建立的评价碳酸盐岩完整孔喉结构的方法——以川西北栖霞组为例[J]. 油气地质与采收率, 2021, 28(3): 53-61.
[12] LI Qian, ZHANG Yuxiang, LI Tao, et al. A method for evaluating complete pore-throat structure of carbonate rocks based on digital cores: A case study of Qixia Formation in Northwest Sichuan[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(3): 53-61.
[13] 陈智远, 孟宪武, 宋晓波, 等. 川西地区雷口坡组成岩流体期次及其来源[J]. 油气地质与采收率, 2021, 28(1): 33-40.
[13] CHEN Zhiyuan, MENG Xianwu, SONG Xiaobo, et al. Analysis of sequences and sources of diagenetic fluid in Leikoupo Formation, western Sichuan Basin[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(1): 33-40.
[14] 解慧, 赵进, 郭臣, 等. 基于优选地震参数的缝洞型油藏单井产能预测模型[J]. 油气地质与采收率, 2022, 29(4): 150-158.
[14] XIE Hui, ZHAO Jin, GUO Chen, et al. Well productivity prediction model for fracture-cavity reservoirs based on optimized seismic parameters[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(4): 150-158.
[15] 王子健, 伍新明, 杜玉山, 等. 基于深度学习的地震断层检测与断面组合[J]. 油气地质与采收率, 2022, 29(1): 69-79.
[15] WANG Zijian, WU Xinming, DU Yushan, et al. Deep learning-based seismic fault detection and surface combination[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(1): 69-79.
[16] 朱孟高, 杨兆刚, 陈雷, 等. 面向开发的河流相储层沉积微相精细描述技术——以林樊家油田LZ9块馆陶组为例[J]. 油气地质与采收率, 2022, 29(6): 39-48.
[16] ZHU Menggao, YANG Zhaogang, CHEN Lei, et al. Development-oriented fine description technology of sedimentary microfacies in fluvial reservoir: A case study of NG in block LZ9 of Linfanjia Oilfield[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(6): 39-48.
[17] 韩向义, 赵莹彬, 杨春峰, 等. 旬宜探区盒1段河道砂体地震精细刻画技术[J]. 石油地质与工程, 2021, 35(3): 5-11.
[17] HAN Xiangyi, ZHAO Yingbin, YANG Chunfeng, et al. Seismic fine description technology of channel sand body of the 1st member of lower Shihezi formation in Xunyi exploration area[J]. Petroleum Geology & Engineering, 2021, 35(3): 5-11.
[18] 邵志芳, 李伟才, 黄煜旸, 等. 春光油田沙湾组多期次辫状河沉积单砂体识别与刻画[J]. 石油地质与工程, 2021, 35(6): 18-24.
[18] SHAO Zhifang, LI Weicai, HUANG Yuyang, et al. Identification and characterization of multi-stage braided river sedimentary single sand bodies of Shawan formation in Chunguang exploration area[J]. Petroleum Geology & Engineering, 2021, 35(6): 18-24.
[19] 归平军, 高照普, 曹绍贺, 等. 基于叠前地震资料AVO信息在东胜气田隐蔽河道识别的应用[J]. 石油地质与工程, 2022, 36(6): 01-07.
[19] GUI Pingjun, GAO Zhaopu, CAO Shaohe, et al. Application of AVO based on pre-stack seismic data in subtle channel identification of Dongsheng gas field[J]. Petroleum Geology & Engineering, 2022, 36(6): 1-7.
[20] 秦雪霏, 李巍. 大牛地气田煤系地层去煤影响储层预测技术[J]. 吉林大学学报(自然科学版), 2014, 44(3): 1048-1054.
[20] QIN Xuefei, LI Wei. Research of identification and trimming of coal-bed interference in Daniudi Gas Field[J]. Journal of Jilin University(Earth Science Edition), 2014, 44(3): 1048-1054.
[21] 徐海, 都小芳, 高君, 等. 基于波形聚类的沉积微相定量解释技术研究——以中东地区X油田为例[J]. 石油物探, 2018, 57(5): 744-755.
[21] XU Hai, DU Xiaofang, GAO Jun, et al. Quantitative interpretation of sedimentary microfacies based on waveform clustering: A case study of X oilfield, Middle East[J]. Geophysical Prospecting for Petroleum, 2018, 57(5): 744-755.
[22] 钱银磊, 胡清雄, 王晓辉, 等. 地震波形指示反演在薄储层预测中的应用[J]. 重庆科技学院学报(自然科学版) 2017, 19(6): 17-20.
[22] QIAN Yinlei, HU Qingxiong, WANG Xiaohui, et al. Application of seismic waveform indicator inversion in thin sandstone prediction technology[J]. Journal of Chongqing Institute of Science and Technology(Natural Science Edition), 2017, 19(6): 17-20.
[23] 张飞飞, 王珩, 郭永贵, 等. 密井网地质统计学反演在河道砂体预测中的应用[J]. 断块油气田, 2016, 23(2): 156-160.
[23] ZHANG Feifei, WANG Heng, GUO Yonggui, et al. Application of dense well geological statistics inversion in prediction of channel sand body[J]. Fault-Block Oil & Gas Field, 2016, 23(2): 156-160.
[24] 夏竹, 李中超, 贾瑞忠, 等. 井震联合薄储层沉积微相表征实例研究[J]. 石油地球物理勘探, 2016, 51(5): 1002-1011.
[24] XIA Zhu, LI Zhongchao, JIA Ruizhong, et al. Thin reservoir sedimentary microfacies characterization based on well logging and seismic data: a case study[J]. Oil Geophysical Prospecting, 2016, 51(5): 1002-1011.
[25] 归平军, 高照普, 曹绍贺, 等. 基于叠前地震资料AVO信息在东胜气田隐蔽河道识别的应用,[J]. 石油地质与工程, 2022, 36(6): 1-7.
[25] GUI Pingjun, GAO Zhaopu, CAO Shaohe, et al. Application of AVO based on pre-stack seismic data in subtle channel identification of Dongsheng gas field[J]. Petroleum Geology and Engineering, 2022, 36(6): 1-7.
[26] 刘成川, 王勇飞, 毕有益. 中江气田窄河道致密砂岩气藏高效开发技术[J]. 油气藏评价与开发, 2022, 12(2): 345-355.
[26] LIU Chengchuan, WANG Yongfei, BI Youyi. Efficient development technique of tight sandstone gas reservoir in narrow channel of Zhongjiang Gas Field[J]. Reservoir Evaluation and Development, 2022, 12(2): 345-355.
[27] 黎虹玮, 袁剑, 赵志川, 等. 泥岩隔层发育背景下的河道砂岩气藏剩余气挖潜实践——以新场气田JS22气层为例[J]. 油气藏评价与开发, 2022, 12(2): 365-372.
[27] LI Hongwei, YUAN Jian, ZHAO Zhichuan, et al. Practice of potential tapping of remaining gas in channel sandstone gas reservoir under the background of mudstone interlayers development: A case study of JS22 gas layer in Xinchang Gas Filed[J]. Reservoir Evaluation and Development, 2022, 12(2): 365-372.
[28] RUTHERFORD S R, WILLIAMS R H. Amplitude-versus-offset variations in gas sands[J]. Geophysics, 1989, 54(6): 680-688.
[29] ROSS C P, KINMAN D L. Nonbright-spot AVO: Two examples[J]. Geophysics, 1995, 60(5): 1283-1597.
[30] 刘兴艳, 李墨寒, 叶泰然. 川西侏罗系复杂河道精细刻画及沉积相带识别[J]. 石油物探, 2019, 60(5): 750-757 LIU Xinyan, LI Mohan, YE Tairan.
[30] Fine characterization of complicated channels in western Sichuan and identification of sedimentary facies[J]. Geophysical Prospecting for Petroleum, 2019, 60(5): 750-757.
[31] 武恒志, 叶泰然, 赵迪, 等. 川西坳陷陆相致密气藏河道砂岩储层精细刻画技术及其应用[J]. 石油与天然气地质, 2015, 36(2): 230-239.
[31] WU Hengzhi, YE Tairan, ZHAO Di, et al. Fine characterization technique and its application to channel sandstone in continental tight gas reservoirs of western Sichuan Depression[J]. Oil & Gas Geology, 2015, 36(2): 230-239.
[32] 郑公营, 吕其彪, 赵爽, 等. 隐蔽河道砂体地震识别关键技术——以四川盆地中江气田中侏罗统沙溪庙组为例[J]. 天然气工业, 2022, 42(9): 35-46.
[32] ZHENG Gongying, LYU Qibiao, ZHAO Shuang, et al. Key technologies for seismic identification of hidden channel sandbodies: A case study of Middle Jurassic Shaximiao Formation in the Zhongjiang Gas Field of the Sichuan Basin[J]. Natural Gas Industry, 2022, 42(9): 35-46.
文章导航

/