页岩气

页岩气藏多尺度孔缝介质压裂液微观赋存机理研究

  • 夏海帮 ,
  • 韩克宁 ,
  • 宋文辉 ,
  • 王伟 ,
  • 姚军
展开
  • 1.中国石化华东油气分公司,江苏 南京 210019
    2.中国石油大学(北京)石油工程学院,北京102249
    3.中国石油大学(华东)石油工程学院,山东 青岛 266580
夏海帮(1974—),男,硕士,高级工程师,主要从事非常规天然气勘探开发工作。地址:江苏省南京市建邺区江东中路375号金融城9号楼,邮政编码:210019。E-mail: 112439883@qq.com

收稿日期: 2022-11-08

  网络出版日期: 2023-11-01

基金资助

中国石化科技部“常压页岩气效益开发技术政策优化研究”(P21087-4);中国石化华东石油局“南川地区页岩气藏储层精细描述和开发评价研究”(34600000-21-ZC0613-0006)

Pore scale fracturing fluid occurrence mechanisms in multi-scale matrix-fracture system of shale gas reservoir

  • Haibang XIA ,
  • Kening HAN ,
  • Wenhui SONG ,
  • Wei WANG ,
  • Jun YAO
Expand
  • 1. Sinopec East China Oil & Gas Company, Nanjing, Jiangsu 210019, China
    2. School of Petroleum Engineering, China University of Petroleum(Beijing), Beijing 102249, China
    3. School of Petroleum Engineering, China University of Petroleum(East China), Qingdao, Shandong 266580, China

Received date: 2022-11-08

  Online published: 2023-11-01

摘要

页岩气藏水力压裂后大量压裂液滞留在基岩孔隙和压裂诱导裂缝内。目前页岩气藏压裂液微观赋存机理认识不清,导致难以准确认识返排过程中页岩气井压裂液返排率差异。建立页岩气藏多尺度孔缝介质压裂液微观赋存分析方法,揭示页岩气藏压裂液微观赋存机理。建立同时考虑岩石-流体作用力和气水界面毛管力的单孔隙气水赋存分析方法,进一步拓展至孔隙网络,采用侵入逾渗研究基岩压裂液赋存模式。基于水力压裂诱导裂缝CT扫描成像结果,采用水平集气、水界面追踪方法计算不同返排压力下气水分布,研究诱导裂缝压裂液赋存模式。研究结果表明:基岩系统返排率呈现缓慢上升—快速上升—趋于平缓的趋势。压裂液主要呈现水相饱和孔隙赋存、角落水相赋存、水膜状赋存3种赋存模式;压裂诱导裂缝系统返排率主要受诱导裂缝周围孔隙连通性影响,呈现快速上升后趋于平缓趋势。滞留压裂液主要赋存在水力压裂诱导裂缝周围盲端基质孔隙。

本文引用格式

夏海帮 , 韩克宁 , 宋文辉 , 王伟 , 姚军 . 页岩气藏多尺度孔缝介质压裂液微观赋存机理研究[J]. 油气藏评价与开发, 2023 , 13(5) : 627 -635 . DOI: 10.13809/j.cnki.cn32-1825/te.2023.05.010

Abstract

After hydraulic fracturing in shale gas reservoir, a significant volume of fracturing fluid retains in the matrix pores and induced fracture network. Currently, the pore scale fracturing fluid occurrence mechanisms are unclear. As a result, it is difficult to accurately understand the difference of fracturing fluid backflow rate of shale gas wells in the backflow process. In this work, the pore scale fracturing fluid occurrence mechanisms analysis method in shale multi-scale matrix-fracture system is developed and the fracturing fluid occurrence mechanisms in shale gas reservoir are elucidated in detail. To understand fracturing fluid occurrence pattern in shale matrix, singe pore gas-water occurrence method is established considering rock-fluid interaction and gas-water capillary pressure and is further extended into the pore network. Invasion percolation is applied to analyze the fracturing fluid occurrence pattern variation during different flowback stages. To understand fracturing fluid occurrence pattern in induced fracture network, the level-set gas-water interface tracking method is applied to calculate gas-water distribution at different flowback pressure based on induced fracture network CT imaging and the fracturing fluid occurrence pattern variation at different flowback stage is studied. Study results reveal that the fracturing fluid flowback rate in shale matrix first increases slowly and then increases fast. In the final stage, the fracturing fluid flowback rate in shale matrix reaches plateau. The fracturing fluid in shale matrix distributes in the forms of water saturated pores, corner water and water film. The fracturing fluid flowback rate in induced fracture network is influenced by pore connectivity around the induced fracture network. The fracturing fluid flowback rate first increases fast and then reaches plateau. The retained fracturing fluid distributes in the dead-end matrix pores around induced fracture network at the final stage.

参考文献

[1] 胡晓华, 张清秀, 吴建发, 等. 页岩气井压裂液返排影响因素研究[C]// 全国天然气学术年会, 中国宁夏银川, 2016: 1579-1584.
[1] HU Xiaohua, ZHANG Qingxiu, WU Jianfa, et al. Influential factors study of flow back of shale gas horizontal wells[C]// Institute of Petroleum and Gas Professional Committee of China, Sichuan Petroleum Institute. 2016 National Natural Gas Academic Annual Conference, Yinchuan, 2016: 1579-1584.
[2] 卢拥军, 王海燕, 管保山, 等. 海相页岩压裂液低返排率成因[J]. 天然气工业, 2017, 37(7): 46-51.
[2] LU Yongjun, WANG Haiyan, GUAN Baoshan, et al. Reasons for the low flowback rates of fracturing fluids in marine shale[J]. Natural Gas Industry, 2017, 37(7): 46-51.
[3] 樊欣欣, 任晓娟. 致密气藏压裂液伤害特征及实验影响因素分析[J]. 石油化工应用, 2017, 36(4): 24-27.
[3] FAN Xinxin, REN Xiaojuan. Damage characteristics of fracturing fluid in tight gas reservoir and analysis of experimental factors[J]. Petrochemical Industry Application, 2017, 36(4): 24-27.
[4] 游利军, 王飞, 康毅力, 等. 页岩气藏水相损害评价与尺度性[J]. 天然气地球科学, 2016, 27(11): 2023-2029.
[4] YOU Lijun, WANG Fei, KANG Yili, et al. Evaluation and scale effect of aqeous phase damage in shale gas reservoir[J]. Natural Gas Geoscience, 2016, 27(11): 2023-2029.
[5] 司志梅, 李爱芬, 郭海萱, 等. 致密油藏压裂液滤液返排率影响因素室内实验[J]. 油气地质与采收率, 2017, 24(1): 122-126.
[5] SI Zhimei, LI Aifen, GUO Haixuan, et al. Experimental study on the influencing factors of fracturing fluid flowback rate in tight reservoir[J]. Petroleum Geology and Recovery Efficiency, 2017, 24(1): 122-126.
[6] GE H K, YANG L, SHEN Y H, et al. Experimental investigation of shale imbibition capacity and the factors influencing loss of hydraulic fracturing fluids[J]. Petroleum Science, 2015, 12(4): 636-650.
[7] HUN L, BING Y, SONG X X, et al. Fracturing fluid retention in shale gas reservoir from the perspective of pore size based on nuclear magnetic resonance[J]. Journal of Hydrology, 2021, 601: 126590.
[8] ZHANG Y, LI Z P, LAI F P, et al. Experimental investigation into the effects of fracturing fluid-shale interaction on pore structure and wettability[J]. Geofluids, 2021, 2021: 6637955.
[9] 张磊, 康钦军, 姚军, 等. 页岩压裂中压裂液返排率低的孔隙尺度模拟与解释[J]. 科学通报, 2014, 59(32): 3197-3203.
[9] ZHANG Lei, KANG Qinjun, YAO Jun, et al. The explanation of low recovery of fracturing fluid in shale hydraulic fracturing by pore-scale simulation[J]. Chinese Science Bulletin, 2014, 59(32): 3197-3203.
[10] SONG W H, LIU L J, WANG D Y, et al. Nanoscale confined multicomponent hydrocarbon thermodynamic phase behavior and multiphase transport ability in nanoporous material[J]. Chemical Engineering Journal, 2020, 382: 122974.
[11] YAO J, SONG W H, WANG D Y, et al. Multi-scale pore network modelling of fluid mass transfer in nano-micro porous media[J]. International Journal of Heat and Mass Transfer, 2019, 141: 156-167.
[12] SONG W H, YIN Y, LANDRY C J, et al. A local-effective-viscosity multi-relaxation-time lattice Boltzmann-pore network coupling model to predict gas transport property in complex nanoporous media[J]. SPE Journal, 2020, 26(1): 461-481.
[13] ISRAELACHVILI J N. Intermolecular and surface forces[M]. 3rd ed. Waltham: Academic Press, 2011.
[14] BERG J C. An introduction to interfaces & colloids: The bridge to nanoscience[M]. Singapore: World Scientific, 2010.
[15] HEATH J E, BRYAN C R, MATTEO E N, et al. Adsorption and capillary condensation in porous media as a function of the chemical potential of water in carbon dioxide[J]. Water Resources Research, 2014, 50(3): 2718-2731.
[16] TOKUNAGA T K. DLVO-based estimates of adsorbed water film thicknesses in geologic CO2 reservoirs[J]. Langmuir, 2012, 28(21): 8001-8009.
[17] BASHKATOV A N, GENINA E A. Water refractive index in dependence on temperature and wavelength: A simple approximation[A]. Proceedings of the Saratov Fall Meeting 2002: Optical Technologies in Biophysics and Medicine IV[C]. International Society for Optics and Photonics, 2003: 393-395.
[18] GREGORY J. Interaction of unequal double layers at constant charge[J]. Journal of Colloid and Interface Science, 1975, 51(1): 44-51.
[19] CHURAEV N, DERJAGUIN B. Inclusion of structural forces in the theory of stability of colloids and films[J]. Journal of Colloid and Interface Science, 1985, 103(2): 542-553.
[20] VALVATNE P H, BLUNT M J. Predictive pore-scale modeling of two-phase flow in mixed wet media[J]. Water Resources Research, 2004, 40(7): W07406.
[21] PRODANOVI? M, BRYANT S L. A level set method for determining critical curvatures for drainage and imbibition[J]. Journal of Colloid and Interface Science, 2006, 304(2): 442-458.
[22] OSHER S, FEDKIW R P. Level set methods and dynamic implicit surfaces[M]. New York: Springer New York, 2005.
[23] PENG D P, MERRIMAN B, OSHER S, et al. A PDE-based fast local level set method[J]. Journal of Computational Physics, 1999, 155(2): 410-438.
文章导航

/