油气藏评价与开发 >
2023 , Vol. 13 >Issue 5: 657 - 667
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2023.05.013
双井同步压裂裂缝扩展规律离散元模拟
收稿日期: 2022-08-08
网络出版日期: 2023-11-01
基金资助
西南石油大学青年科技创新团队项目“非常规地层岩石物理”(2018CXTD13)
Discrete element simulation study on fracture propagation law of dual well synchronous fracturing
Received date: 2022-08-08
Online published: 2023-11-01
针对不同条件下的双井同步水力压裂裂缝扩展及演化规律尚不明确,裂缝之间的相互作用会引起裂缝重新定向,影响水力压裂效果等问题。通过离散元法,研究不同因素影响下裂缝扩展规律及破坏模式。结果表明:当井间连线与最大主应力夹角θ为0°时,在水平应力差的影响下井壁周围应力分为2个阶段:裂缝相交前稳定阶段以及裂缝相交后急剧上升阶段。随着水平主应力差减小,破坏模式由单一裂缝转变为多裂缝破坏。当θ不为0°时,由于地层的地应力场发生改变,进而引起裂缝偏转,形成连通两井的倾斜裂缝。在压裂过程中裂缝的扩展对周围区域施加较大的应力,而局部应力状态大小和方向的改变都因主裂缝的扩展而改变,使裂缝偏离最大主应力方向扩展。
张家伟 , 刘向君 , 熊健 , 梁利喜 , 任建飞 , 刘佰衢 . 双井同步压裂裂缝扩展规律离散元模拟[J]. 油气藏评价与开发, 2023 , 13(5) : 657 -667 . DOI: 10.13809/j.cnki.cn32-1825/te.2023.05.013
The understanding of fracture propagation and evolution during dual well synchronous hydraulic fracturing, particularly under various conditions, remains limited. Meanwhile, the interaction between fractures will cause fracture reorientation and affect the hydraulic fracturing effect. In order to solve these problems, the fracture propagation law and failure mode under the influence of different factors are studied by the discrete element method. The results show that when the angle between the interwell connecting line and the maximum principal stress (θ) is 0°, and under the influence of the horizontal stress difference, the stress around the borehole wall can be divided into two stages: the stable stage before the fracture intersection and the steep rise stage after the fracture intersection. With the decrease of the horizontal principal stress difference, the failure mode changes from single fracture to multi fracture failure. When θ≠0°, the in-situ stress field of the formation changes, which causes the fracture deflection and forms an inclined fracture connecting the two wells. During the fracturing process, the expansion of the fracture exerts great stress on the surrounding area, and the magnitude and direction of local stress state change due to the expansion of the main fracture. So that the crack spreads away from the direction of the maximum principal stress.
[1] | 邹才能, 朱如凯, 吴松涛, 等. 常规与非常规油气聚集类型、特征、机理及展望-以中国致密油和致密气为例[J]. 石油学报, 2012, 33(2): 173-187. |
[1] | ZOU Caineng, ZHU Rukai, WU Songtao, et al. Types, characteristics, genesis and prospects of conventional and unconventional hydrocarbon accumulations: Taking tight oil and tight gas in China as an instance[J]. Acta Petrolei Sinica, 2012, 33(2): 173-187. |
[2] | 张宏学, 刘卫群. 页岩气开采的相关实验、模型和环境效应[J]. 岩土力学, 2014, 35(S2): 85-100. |
[2] | ZHANG Hongxue, LIU Weiqun. Relevant experiments, models and environmental effect of shale gas production[J]. Rock and Soil Mechanics, 2014, 35(S2):85-100. |
[3] | 张金川, 陶佳, 李中明, 等. 中国页岩剖面区域分布及其页岩气地质意义[J]. 油气藏评价与开发, 2022, 12(1): 29-46. |
[3] | ZHANG Jinchuan, TAO Jia, LI Zhongming, et al. Regional distribution of field shale outcrop in China and its shale gas significance[J]. Reservoir Evaluation and Development, 2022, 12(1): 29-46. |
[4] | 易同生, 陈捷. 黔西石炭系页岩气赋存特征与勘探潜力[J]. 油气藏评价与开发, 2022, 12(1): 82-94. |
[4] | YI Tongsheng, CHEN Jie. Occurrence characteristics and exploration potential of Carboniferous shale gas in western Guizhou[J]. Reservoir Evaluation and Development, 2022, 12(1): 82-94. |
[5] | 曾义金, 杨春和, 张保平. 页岩气开发工程中的理论与实践[M]. 北京: 科学出版社, 2017. |
[5] | ZENG Yijin, YANG Chunhe, ZHANG Baoping. The theory and practice in shale gas development engineering[M]. Beijing: Science Press, 2017. |
[6] | 张磊磊, 陆正元, 王军, 等. 渤海湾盆地沾化凹陷沙三下亚段页岩油层段微观孔隙结构[J]. 石油与天然气地质, 2016, 37(1): 80-86. |
[6] | ZHANG Leilei, LU Zhengyuan, WANG Jun, et al. Microscopic pore structure of shale oil reservoirs in the Lower 3rd Member of Shahejie Formation in Zhanhua Sag, Bohai Bay Basin[J]. Oil & Gas Geology, 2016, 37(1): 80-86. |
[7] | 兰俊. 海陆过渡相煤系页岩气成藏条件及储层特征[J]. 石油地质与工程, 2021, 35(5): 27-32. |
[7] | LAN Jun. Reservoir forming conditions and reservoir characteristics of coal measure shale gas in marine continental transitional facies[J]. Petroleum Geology & Engineering, 2021, 35(5): 27-32. |
[8] | 唐颖, 张金川, 张琴, 等. 页岩气井水力压裂技术及其应用分析[J]. 天然气工业, 2010, 30(10): 33-38. |
[8] | TANG Ying, ZHANG Jinchuan, ZHANG Qin, et al. An analysis of hydraulic fracturing technology in shale gas wells and its application[J]. Natural Gas Industry, 2010, 30(10): 33-38. |
[9] | 曾慧勇, 陈立峰, 陈亚东, 等. 压裂-驱油一体化工作液研究进展[J]. 油气地质与采收率, 2022, 29(3): 162-170. |
[9] | ZENG Huiyong, CHEN Lifeng, CHEN Yadong, et al. Research progress on fracturing-oil displacement integrated working fluid[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(3): 162-170. |
[10] | 刘子军. 基于Pearson 相关系数的低渗透砂岩油藏重复压裂井优选方法[J]. 油气地质与采收率, 2022, 29(2): 140-144. |
[10] | LIU Zijun. Method for selecting repeated fracturing wells in low-permeability sandstone reservoirs based on Pearson correlation coefficient[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(2): 140-144. |
[11] | 崔青. 美国页岩气压裂增产技术[J]. 石油化工应用, 2010, 29(10): 1-3. |
[11] | CUI Qing. Fracture-stimulation technology of American shale gas[J]. Petrochemical Industry Application, 2010, 29(10): 1-3. |
[12] | CHEN X Y, LI Y M, ZHAO J Z, et al. Numerical investigation for simultaneous growth of hydraulic fractures in multiple horizontal wells[J]. Journal of Natural Gas Science and Engineering, 2017, 51: 44-52. |
[13] | DAMJANAC B, CUNDALL P. Application of distinct element methods to simulation of hydraulic fracturing in naturally fractured reservoirs[J]. Computers & Geotechnics, 2016, 71: 283-294. |
[14] | 杨喜萍, 胡景宏, 付亮, 等. 致密砂岩气藏射孔完井裂缝起裂压力研究[J]. 石油地质与工程, 2022, 36(6): 92-99. |
[14] | YANG Xiping, HU Jinghong, FU Liang, et al. Fracture initiation pressure of perforation completion in tight sandstone gas reservoir[J]. Petroleum Geology & Engineering, 2022, 36(6): 92-99. |
[15] | LIU X Q, RASOULI V, GUO T K, et al. Numerical simulation of stress shadow in multiple cluster hydraulic fracturing in horizontal wells based on lattice modelling[J]. Engineering Fracture Mechanics, 2020, 238: 107278. |
[16] | MANRIQUEZ A L. Stress behavior in the near fracture region between adjacent horizontal wells during multistage fracturing using a coupled stress-displacement to hydraulic diffusivity model[J]. Journal of Petroleum Science and Engineering, 2018, 162: 822-834. |
[17] | SHAN Q L, ZHANG R X, JIANG Y J. Complexity and tortuosity hydraulic fracture morphology due to near-wellbore nonplanar propagation from perforated horizontal wells[J]. Journal of Natural Gas Science and Engineering, 2021, 89(1). |
[18] | LI XIANG, FENG Z J, HAN G, et al. Breakdown pressure and fracture surface morphology of hydraulic fracturing in shale with H2O, CO2 and N2[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2016, 2(2): 63-76. |
[19] | XUE J Q, LI N Y, LU X B. Productivity model for gas reservoirs with open-hole multi-fracturing horizontal wells and optimization of hydraulic fracture parameters[J]. Petroleum, 2017, 3(4): 454-460. |
[20] | WU Y, HUANG Z, ZHAO K, et al. Unsteady seepage solutions for hydraulic fracturing around vertical wellbores in hydrocarbon reservoirs[J]. International Journal of Hydrogen Energy, 2020, 45(16): 9496-9503. |
[21] | BRUNO M S, NAKAGAWA F M. Bore pressure influence on tensile fracture propagation in sedimentary rock[J]. International Journal of Rock Mechanics and Mining Sciences and, 1991, 28(4): 261-273. |
[22] | CUNDALL P A. A discontinuous future for numerical modelling in geomechanics?[J]. Geotechnical Engineering, 2001, 149(1): 41-47. |
[23] | DAMJANAC B, CUNDALL P. Application of distinct element methods to simulation of hydraulic fracturing in naturally fractured reservoirs[J]. Computers and Geotechnics, 2016, 71: 283-294. |
[24] | DUAN K, LI Y C, YANG W D. Discrete element method simulation of the growth and efficiency of multiple hydraulic fractures simultaneously-induced from two horizontal wells[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2021, 7. |
[25] | KWOK C Y, DUAN K, PIERCE M. Modeling hydraulic fracturing in jointed shale formation with the use of fully coupled discrete element method[J]. Acta Geotechnica, 2020, 15(1): 245. |
[26] | 李静, 孔祥超, 宋明水, 等. 储层岩石微观孔隙结构对岩石力学特性及裂缝扩展影响研究[J]. 岩土力学, 2019, 40(11): 4149-4156. |
[26] | LI Jing, KONG Xiangchao, SONG Mingshui, et al. Study on the influence of reservoir rock micro-pore structure on rock mechanical properties and crack propagation[J]. Rock and Soil Mechanics, 2019, 40(11): 4149-4156. |
[27] | AL-BUSAIDI A, HAZZARD J F, YOUNG R P. Distinct element modeling of hydraulically fractured Lac du Bonnet granite[J]. Journal Geophysical Research-Oceans, 2005, 110: B06302. |
[28] | CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Geotechnique, 1979, 29(1): 47-65. |
[29] | 刘鹏. 砂砾岩水压致裂机理的实验与数值模拟研究[D]. 北京: 中国矿业大学(北京), 2017. |
[29] | LIU Peng. Experimental and numerical simulating studies on hydrofracturing mechanism of glutenite[D]. Beijing: China University of Mining and Technology(Beijing), 2017. |
[30] | SNEDDON I N. The distribution of stress in the neighbourhood of a crack in an elastic solid[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1946, 187(1009): 229-260. |
/
〈 | 〉 |