页岩气

常压页岩气藏成因分析与有效开发——以四川盆地东南缘地区五峰组—龙马溪组页岩气藏为例

  • 薛冈 ,
  • 熊炜 ,
  • 张培先
展开
  • 中国石化华东油气分公司,江苏 南京 210019
薛冈(1971—),男,博士,高级工程师,从事油气勘探研究和管理工作。地址:江苏省南京市建邺区江东中路375号金融城9号楼,邮政编码:210019。E-mail:xueg.hdsj@sinopec.com

收稿日期: 2023-04-10

  网络出版日期: 2023-11-01

基金资助

国家科技重大专项“彭水地区常压页岩气勘探开发示范工程”(2016ZX05061);中国石化科技部项目“南川—武隆地区常压页岩气富集高产机理与目标评价”(P21087-6)

Genesis analysis and effective development of normal pressure shale gas reservoir: A case of Wufeng-Longmaxi shale gas reservoir in southeast margin of Sichuan Basin

  • Gang XUE ,
  • Wei XIONG ,
  • Peixian ZHANG
Expand
  • Sinopec East China Oil & Gas Company, Nanjing, Jiangsu 210019, China

Received date: 2023-04-10

  Online published: 2023-11-01

摘要

四川盆地东南缘(简称川东南)地区五峰组—龙马溪组发育以武隆残留向斜型常压页岩气藏和涪陵背斜型高压页岩气藏为代表的2种页岩气藏类型。基于地质工程一体化思路,利用页岩埋藏史、钻井及水平井压裂参数等资料,根据常压页岩气地质特点,开展常压页岩气藏成因分析及形成机理研究,结合2口页岩气水平井的实际生产效果,优化了常压页岩气藏压裂工艺参数,并得出结论:①川东南地区五峰组—龙马溪组常压页岩气藏主要经过燕山期和喜山期两期构造作用破坏调整形成;②构造抬升导致的页岩气逸散是形成常压页岩气的主要原因;③武隆常压页岩气藏与Marcellus(马塞勒斯)常压页岩气藏地质特点相似,但开发效果差异较大,压裂规模模拟表明武隆常压页岩气藏需进一步优化水平井分段压裂参数、提高单井产量、降低开发成本,有望实现有效开发。

本文引用格式

薛冈 , 熊炜 , 张培先 . 常压页岩气藏成因分析与有效开发——以四川盆地东南缘地区五峰组—龙马溪组页岩气藏为例[J]. 油气藏评价与开发, 2023 , 13(5) : 668 -675 . DOI: 10.13809/j.cnki.cn32-1825/te.2023.05.014

Abstract

There are two types of shale gas reservoirs in the Wufeng-Longmaxi shale formation of southeast margin of Sichuan Basin: normal pressure shale gas reservoir in Wulong residual syncline and abnormal over-pressure shale gas reservoir in Fuling anticline. This study takes an integrated geology-engineering approach to analyze the genesis and formation mechanisms of normal pressure shale gas reservoirs in the Wulong area. The analysis is based on shale burial history curves, drilling data, horizontal well fracturing parameters, and the geological characteristics specific to normal pressure shale gas reservoirs. Combined with the actual production effects of two horizontal shale gas wells, the fracturing process parameters of normal pressure shale gas reservoirs are optimised. Then three main points have been obtained in this study: ①The normal pressure shale gas reservoir of the Wufeng-Longmaxi Formation in Wulong area is formed during the structural destruction adjustment of the Yanshanian and Himalayan tectonic periods. ②The shale gas escaping caused by tectonic elevation is the main reason for the formation of normal pressure shale gas. ③Compared with the Marcellus normal pressure shale gas reservoir, Wulong normal pressure shale gas reservoir has the similar geological characteristics, but the development effect varies greatly. The fracturing scale simulation shows that it is necessary to further optimise the horizontal well segmented fracturing parameters, increase the output of single wells, and reduce development costs. Only in this way can effective development be realised.

参考文献

[1] 郭旭升, 胡东风, 李宇平, 等. 涪陵页岩气田富集高产主控地质因素[J]. 石油勘探与开发, 2017, 44(4): 481-491.
[1] GUO Xusheng, HU Dongfeng, LI Yuping, et al. Geological factors controlling shale gas enrichment and high production in Fuling shale gas field[J]. Petroleum Exploration and Development, 2017, 44(4): 481-491.
[2] 郭彤楼, 何希鹏, 曾萍, 等. 复杂构造区页岩气藏地质特征与效益开发建议——以四川盆地及其周缘五峰组—龙马溪组为例[J]. 石油学报, 2020, 41(12): 1490-1500.
[2] GUO Tonglou, HE Xipeng, ZENG Ping, et al. Geological characteristics and beneficial development scheme of shale gas reservoirs in complex tectonic regions: A case study of Wufeng-Longmaxi formations in Sichuan Basin and its periphery[J]. Acta Petrolei Sinica, 2020, 41(12): 1490-1500.
[3] 聂海宽, 汪虎, 何治亮, 等. 常压页岩气形成机制、分布规律及勘探前景——以四川盆地及其周缘五峰组—龙马溪组为例[J]. 石油学报, 2019, 40(2): 131-143.
[3] NIE Haikuan, WANG Hu, HE Zhiliang, et al. Formation mechanism, distribution and exploration prospect of normal pressure shale gas reservoir: A case study of Wufeng-Longmaxi formations in Sichuan Basin and its periphery[J]. Acta Petrolei Sinica, 2019, 40(2): 131-143.
[4] 蒋恕, 张天宇, 郭彤楼, 等. 川东南下志留统与Appalachian泥盆系典型常压页岩气藏富集特征对比[J]. 地球科学, 2023, 48(1): 77-91.
[4] JIANG Shu, ZHANG Tianyu, GUO Tonglou, et al. Comparison of enrichment characteristics of typical normally-pressured shale gas reservoirs in lower Silurian Shale in southeastern Sichuan Basin and Devonian Shales in Appalachian Basin[J]. Earth Science, 2023, 48(1): 77-91.
[5] 张培先, 聂海宽, 何希鹏, 等. 渝东南地区古生界天然气成藏体系及立体勘探[J]. 地球科学, 2023, 48(1): 206-222.
[5] ZHANG Peixian, NIE Haikuan, HE Xipeng, et al. Paleozoic gas accumulation system and stereoscopic exploration in southeastern Chongqing[J]. Earth Science, 2023, 48(1): 206-222.
[6] 张培先, 何希鹏, 高玉巧, 等. 川东南五峰组—龙马溪组页岩气目标评价及水平井设计技术[J]. 科学技术与工程, 2023, 23(3): 1024-1032.
[6] ZHANG Peixian, HE Xipeng, GAO Yuqiao, et al. Shale gas target evaluation techniques and horizontal well design technology of Wufeng-Longmaxi Formation in southeast Sichuan[J]. Science Technology and Engineering, 2023, 23(3): 1024-1032.
[7] OSBORNE M J, SWARBRICK R E. Mechanisms for generating overpressure in sedimentary basins: A reevaluation[J]. AAPG Bulletin, 1997, 81(6): 1023-1041.
[8] 李轲, 陈杨, 牟必鑫, 等. 西昌盆地南部地区志留系龙马溪组页岩气保存条件的评价[J]. 非常规油气, 2021, 8(1): 34-42.
[8] LI Ke, CHEN Yang, MOU Bixin, et al. Evaluation of shale gas preservation conditions in Longmaxi formation of silurian in southern Xichang Basin[J]. Unconventional Oil & Gas, 2021, 8(1): 34-42.
[9] CURTIS J B. Fractured shale-gas systems[J]. AAPG Bulletin, 2002, 86(11): 1921-1938.
[10] POLLASTRO R M, JARVIE D M, HILL R J, et al. Geologic framework of the Mississippian Barnett Shale, Barnett-Paleozoic total petroleum system, Bend arch-Fort Worth Basin, Texas[J]. AAPG Bulletin, 2007, 91(4): 405-436.
[11] MONTGOMERY S L, JARVIE D M, BOWKER K A. Mississippian Barnett Shale, Fort Worth basin, north-central Texas: Gas-shale play with multi-million cubic foot potential[J]. AAPG Bulletin, 2005, 89(2): 155-175.
[12] 方志雄, 何希鹏. 渝东南武隆向斜常压页岩气形成与演化[J]. 石油与天然气地质, 2016, 37(6): 819-827.
[12] FANG Zhixiong, HE Xipeng. Formation and evolution of normal pressure shale gas reservoir in Wulong Syncline, Southeast Chongqing, China[J]. Oil & Gas Geology, 2016, 37(6): 819-827.
[13] 董莎, 荆晨, 宋雯静, 等. 北美页岩气水平井重复压裂技术进展与启示[J]. 钻采工艺, 2022, 45(4): 98-102.
[13] DONG Sha, JING Chen, SONG Wenjing, et al. Development and enlightenment of re-fracturing technology for horizontal shale gas wells in North America[J]. Drilling & Production Technology, 2022, 45(4): 98-102.
[14] 董莎, 荆晨, 宋雯静, 等. 北美页岩气水平井重复压裂技术进展与启示[J]. 钻采工艺, 2022, 45(4): 98-102.
[14] DONG Sha, JING Chen, SONG Wenjing, et al. Development and enlightenment of re-fracturing technology for horizontal shale gas wells in North America[J]. Drilling & Production Technology, 2022, 45(4): 98-102.
[15] 李勇明, 许文俊, 赵金洲, 等. 页岩储层中水力裂缝穿过天然裂缝的判定准则[J]. 天然气工业, 2015, 35(7): 49-54.
[15] LI Yongming, XU Wenjun, ZHAO Jinzhou, et al. Criteria for judging whether hydraulic fractures cross nature fractures in shale reservoirs[J]. Natural Gas Industry, 2015, 35(7): 49-54.
[16] 刘旭礼. 页岩气体积压裂压后试井分析与评价[J]. 天然气工业, 2016, 36(8): 66-72.
[16] LIU Xuli. Well test analysis and evaluation after shale gas volume fracturing stimulation[J]. Natural Gas Industry, 2016, 36(8): 66-72.
[17] 夏永江, 于荣泽, 卞亚南, 等. 美国Appalachian盆地Marcellus页岩气藏开发模式综述[J]. 科学技术与工程, 2014, 14(20): 1671-1816.
[17] XIA Yongjiang, YU Rongze, BIAN Ya'nan, et al. The development mode review of Marcellus Shale Gas reservoir in Appalachian Basin, USA[J]. Science Technology and Engineering, 2014, 14(20): 1671-1816.
[18] TAKAHASHI S, KOVSCEK A R. Wet ability estimation of low-permeability, siliceous shale using surface force[J]. Journal of Petroleum Science and Engineering, 2010, 75(1-2): 33-43.
[19] 周再乐, 张广清, 熊文学, 等. 水平井限流压裂射孔参数优化[J]. 断块油气田, 2015, 22(3): 374-378.
[19] ZHOU Zaile, ZHANG Guangqing, XIONG Wenxue, et al. Perforating parameter optimization of limit entry fracturing for horizontal wells[J]. Fault-Block Oil & Gas Field, 2015, 22(3): 374-378.
[20] 曾义金, 陈作, 卞晓冰. 川东南深层页岩气分段压裂技术的突破与认识[J]. 天然气工业, 2016, 36(1): 61-67.
[20] ZENG Yijin, CHEN Zuo, BIAN Xiaobing. Breakthrough in staged fracturing technology for deep shale gas reservoirs in SE Sichuan Basin and its implications[J]. Natural Gas Industry, 2016, 36(1): 61-67.
[21] 何希鹏, 高玉巧, 何贵松, 等. 渝东南南川页岩气田地质特征及勘探开发关键技术[J]. 油气藏评价与开发, 2021, 11(3): 305-316.
[21] HE Xipeng, GAO Yuqiao, HE Guisong, et al. Geological characteristics and key technologies for exploration and development of Nanchuan Shale Gas Field in southeast Chongqing[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(3): 305-316.
[22] 车明光, 王萌, 王永辉, 等. 威远页岩气水平井压裂参数优化[J]. 西安石油大学学报(自然科学版), 2022, 37(2): 53-58.
[22] CHE Mingguang, WANG Meng, WANG Yonghui, et al. Optimization of fracturing parameters of horizontal wells in Weiyuan shale gas field[J]. Journal of Xi’an Shiyou University(Natural Science Edition), 2022, 37(2): 53-58.
[23] 肖佳林, 游园, 朱海燕, 等. 重庆涪陵国家级页岩气示范区开发调整井压裂工艺关键技术[J]. 天然气工业, 2022, 42(11): 58-65.
[23] XIAO Jialin, YOU Yuan, ZHU Haiyan, et al. Key technologies for development adjustment well fracturing in Chongqing Fuling national shale gas demonstration area[J]. Natural Gas Industry, 2022, 42(11): 58-65.
[24] 吴天. 四川盆地平桥南区页岩气水平井工程参数对产量的影响分析[J]. 油气藏评价与开发, 2021, 11(3): 422-427.
[24] WU Tian. Influence of engineering parameters on production of horizontal shale gas wells in southern Pingqiao Block, Sichuan Basin[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(3): 422-427.
[25] 蒋恕, 李园平, 杜凤双, 等. 提高页岩气藏压裂井射孔簇产气率的技术进展[J]. 油气藏评价与开发, 2023, 13(1): 9-22.
[25] JIANG Shu, LI Yuanping, DU Fengshuang, et al. Recent advancement for improving gas production rate from perforated clusters in fractured shale gas reservoir[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(1): 9-22.
[26] 郑有成, 赵志恒, 曾波, 等. 川南长宁区块页岩气高密度完井+高强度加砂压裂探索与实践[J]. 钻采工艺, 2021, 44(2): 43-48.
[26] ZHENG Youcheng, ZHAO Zhiheng, ZENG Bo, et al. Exploration and practice on combination of high-density completion and high-intensity sand fracturing in shale gas horizontal well of Changning Block in Southern Sichuan Basin[J]. Drilling & Production Technology, 2021, 44(2): 43-48.
文章导航

/