综合研究

致密油水平井温度剖面影响规律研究

  • 罗红文 ,
  • 张琴 ,
  • 李海涛 ,
  • 向雨行 ,
  • 李颖 ,
  • 庞伟 ,
  • 刘畅 ,
  • 于皓 ,
  • 王亚宁
展开
  • 1.西南石油大学油气藏地质及开发工程国家重点实验室, 四川 成都 610500
    2.中国石化石油工程技术研究院,北京 102299
罗红文(1990—),男,博士,助理研究员,现从事油气藏温度动态模拟、水平井产出剖面评价及分布式光纤监测解释方面的研究。地址:四川省成都市新都区新都大道8号,邮政编码:610500。E-mail: rojielhw@163.com

收稿日期: 2022-05-23

  网络出版日期: 2023-11-01

基金资助

中国博士后科学基金项目“页岩气水平井多场耦合热变规律及产出剖面反演方法研究”(2021M702721);四川省自然科学基金项目“页岩气水平井多场耦合热变规律及产出剖面反演方法研究”(2022NSFSC0993);中国石油科技创新基金研究项目“水平井压裂声波响应机理实验及DAS大数据智能反演方法研究”(2022DQ02-0305)

Influence law of temperature profile for horizontal wells in tight oil reservoirs

  • Hongwen LUO ,
  • Qin ZHANG ,
  • Haitao LI ,
  • Yuxing XIANG ,
  • Ying LI ,
  • Wei PANG ,
  • Chang LIU ,
  • Hao YU ,
  • Yaning WANG
Expand
  • 1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China
    2. SINOPEC Research Institute of Petroleum Engineering Co., Ltd, Beijing 102299, China

Received date: 2022-05-23

  Online published: 2023-11-01

摘要

由于目前缺乏可靠的致密油水平井温度剖面预测模型、对致密油水平井温度剖面影响规律认识不清,导致基于分布式光纤的致密油水平井产出剖面定量评价仍是一项技术难题。鉴于此,创建了考虑多种微热效应的致密油水平井温度剖面预测模型,探究了井筒温度剖面受不同单因素变化的影响,通过正交试验,确定不同因素的敏感性由强到弱依次为:产量、裂缝半长、储层渗透率、井筒直径、水平倾角、裂缝导流能力、储层总导热系数(Q>xf>K>D>θ>FCD>Kt),明确了影响致密油水平井温度剖面的主控因素为裂缝半长和储层渗透率。研究成果为定量分析致密油水平井井筒流动剖面、人工裂缝等参数提供了可用温度模型和理论支撑。

本文引用格式

罗红文 , 张琴 , 李海涛 , 向雨行 , 李颖 , 庞伟 , 刘畅 , 于皓 , 王亚宁 . 致密油水平井温度剖面影响规律研究[J]. 油气藏评价与开发, 2023 , 13(5) : 676 -685 . DOI: 10.13809/j.cnki.cn32-1825/te.2023.05.015

Abstract

The challenge of reliably predicting temperature profiles in horizontal wells in tight oil reservoirs, coupled with an incomplete understanding of the factors influencing these profiles, has hindered the quantitative interpretation of tight oil horizontal well production using distributed optical fiber technology. To address this issue, a comprehensive model has been developed to estimate temperature profiles in horizontal wells in tight oil reservoirs, accounting for various microthermal effects. The temperature profiles of horizontal wells in tight oil reservoir under different single factors were simulated and analyzed. Then, through orthogonal experiment analysis, it demonstrates that the sensitivity of different factors from strong to weak is production rate, fracture half-length, reservoir permeability, wellbore diameter, horizontal inclination angle, fracture conductivity, and total reservoir thermal conductivity(Q>xf>K>D>θ>FCD>Kt). It is worth noting that fracture half-length and formation permeability emerged as the primary factors influencing the temperature profile of horizontal wells in tight oil reservoirs. The research results provide available basic models and theoretical support for quantitative interpretation of production profile and artificial fracture parameters for horizontal wells in tight oil reservoir.

参考文献

[1] 李海涛, 罗红文, 向雨行, 等. DTS/DAS技术在水平井压裂监测中的应用现状与展望[J]. 新疆石油天然气, 2021, 17(4): 62-73.
[1] LI Haitao, LUO Hongwen, XIANG Yuxing, et al. The application status and prospect of DTS/DAS in fracturing monitoring of horizontal wells[J]. Xinjiang Oil & Gas, 2021, 17(4): 62-73.
[2] 朱世琰. 基于分布式光纤温度测试的水平井产出剖面解释理论研究[D]. 成都: 西南石油大学, 2016.
[2] ZHU Shiyan. Theoretical study on the interpretation of inflow profile based on the distributed optical fiber temperature sensing[D]. Chengdu: Southwest Petroleum University, 2016.
[3] YOSHIDA N. Modeling and interpretation of downhole temperature in a horizontal well with multiple fractures[D]. Texas: Texas A&M University, 2016.
[4] 蔡珺君. 水平井井筒温度预测及解释模型研究[D]. 成都: 西南石油大学, 2016.
[4] CAI Junjun. Study on prediction and interpretation model of wellbore temperature for a horizontal well[D]. Chengdu: Southwest Petroleum University, 2016.
[5] 谭先红, 梁斌, 王帅, 等. 一种低渗储层凝析气藏气井产能评价方法研究[J]. 油气藏评价与开发, 2021, 11(5): 724-729.
[5] TAN Xianhong, LIANG Bin, WANG Shuai, et al. A productivity evaluation method of gas wells in condensate gas reservoirs with low permeability[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(5): 724-729.
[6] 罗红文, 李海涛, 安树杰, 等. 致密气藏压裂水平井温度剖面影响因素分析[J]. 特种油气藏, 2021, 28(4): 150-157.
[6] LUO Hongwen, LI Haitao, AN Shujie, et al. Analysis of influencing factors of temperature profile of fractured horizontal well in tight gas reservoir[J]. Special Oil & Gas Reservoirs, 2021, 28(4): 150-157.
[7] UGUETO G A, HUCKABEE P T, MOLENAAR M M. Challenging assumption about fracture stimulation placement effectiveness using fiber optic distributed sensing diagnostics: Diversion, stage isolation and overflushing[C]// Paper SPE-173348-MS presented at the SPE Hydraulic Fracturing Technology Conference, The Woodlands, Texas, USA, February 2015.
[8] SOOKPRASONG P A, HURT R S, GILL C C. Downhole monitoring of multicluster, multistage horizontal well fracturing with fiber optic distributed acoustic sensing(DAS) and distributed temperature sensing(DTS)[C]// Paper IPTC-17972-MS presented at the International Petroleum Technology Conference, Kuala Lumpur, Malaysia, December 2014.
[9] 罗红文, 李海涛, 刘会斌, 等. 低渗气藏两相渗流压裂水平井温度剖面预测[J]. 天然气地球科学, 2019, 30(3): 389-399.
[9] LUO Hongwen, LI Haitao, LIU Huibin, et al. Temperature profile prediction of two-phase percolation fractured horizontal well in low permeability gas reservoir[J]. Natural Gas Geoscience, 2019, 30(3): 389-399.
[10] 罗红文, 李海涛, 李颖, 等. 低渗透气藏压裂水平井产出剖面与裂缝参数反演解释[J]. 石油学报, 2021, 42(7): 936-947.
[10] LUO Hongwen, LI Haitao, LI Ying, et al. Inversion interpretation of production profile and fracture parameters of fractured horizontal Wells in low permeability gas reservoirs[J]. Acta Petrolei Sinica, 2021, 42(7): 936-947.
[11] 李亚辉. 基于DTS数据的底水气藏水平井产出剖面解释模型及实现[D]. 成都: 西南石油大学, 2018.
[11] LI Yahui. Production profile interpretation model and realization of horizontal well in bottom water gas reservoir based on DTS data[D]. Chengdu: Southwest Petroleum University, 2018.
[12] YOSHIOKA K, ZHU D, HILL A D, et al. Prediction of temperature changes caused by water or gas entry into a horizontal well[J]. SPE Production & Operations, 2007, 22(4): 425-433.
[13] LI Z Y, ZHU D. Predicting flow profile of horizontal well by downhole pressure and distributed-temperature data for water drive-reservoir[J]. SPE Production & Operations, 2010, 25(3): 296-304.
[14] YOSHIOKA K, ZHU D, Hill A D. A new inversion method to interpret flow profiles from distributed temperature and pressure measurements in horizontal wells[J]. SPE Production & Operations, 2009, 24(4): 510-521.
[15] 李军. 致密油藏储量升级潜力不确定性评价方法及应用[J]. 石油与天然气地质, 2021, 42(3): 755-764.
[15] LI Jun. Non-deterministic method for tight oil reserves up grade potential assessment and its application[J]. Oil & Gas Geology, 2021, 42(3): 755-764.
[16] 刘传喜, 方文超, 秦学杰. 非常规油气藏压裂水平井动态缝网模拟方法及应用[J]. 石油与天然气地质, 2022, 43(3): 696-702.
[16] LIU Chuanxi, FANG Wenchao, QIN Xuejie. Simulation of dynamic fracture network in fractured horizontal well for unconventional reservoirs: Theory and application[J]. Oil & Gas Geology, 2022, 43(3): 696-702.
[17] BIRD R B, STEWART W E, LIGHTFOOT E N, et al. Transport phenomena[J]. John Wiley & Sons, 1960, 28(2): 338-359.
[18] OLDENBURG C M. Joule-Thomson cooling due to CO2 injection into natural gas reservoirs[J]. Energy Conversion & Management, 2007, 48(6): 1808-1815.
[19] LUO H W, LI Y, LI H T, et al. Simulated annealing algorithm-based inversion model to interpret flow rate profiles and fracture parameters for horizontal wells in unconventional gas reservoirs[J]. SPE Journal, 2021, 26(4): 1679-1699.
[20] LUO H W, LI H T, LU Y, et al. Inversion of distributed temperature measurements to interpret the flow profile for a multistage fractured horizontal well in low-permeability gas reservoir[J]. Applied Mathematical Modelling, 2020, 77: 360-377.
[21] LUO H W, LI H T, TAN Y S, et al. A novel inversion approach for fracture parameters and inflow rates diagnosis in multistage fractured horizontal wells[J]. Journal of Petroleum Science and Engineering, 2020, 184: 106585.
[22] 李海涛, 罗红文, 李颖, 等. 基于DTS的页岩气藏压裂水平井产出剖面解释[J]. 天然气工业, 2021, 41(5): 66-75.
[22] LI Haitao, LUO Hongwen, LI Ying, et al. Production profile interpretation of fractured horizontal Wells in shale gas reservoirs based on DTS[J]. Natural Gas Industry, 2021, 41(5): 66-75.
文章导航

/