油气藏评价与开发 >
2023 , Vol. 13 >Issue 6: 703 - 712
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2023.06.001
岩土分层对中深层U型对接井换热性能的影响
收稿日期: 2023-04-10
网络出版日期: 2024-01-03
基金资助
中国石化科技项目“‘井下换热’中深层地热能开发技术研究”(JR22010);中国石化集团新星石油有限责任公司科技项目“U型对接井换热技术研究——现场工程配套及性能分析”(10500000-21-ZC0607-0025)
Effect of rock-soil stratification on the heat transfer performance of U-shaped butted well in medium-deep layers
Received date: 2023-04-10
Online published: 2024-01-03
中深层U型对接式换热井出水温度高、取热能力大、井内流动阻力小,是理想的中深层地热能换热形式。基于热阻串联理论,建立了中深层U型对接式换热井地下换热的分层解析计算模型,并采用实测结果进行了验证。在建立解析模型的基础上,选取关中盆地作为研究区域,分析了地下3 000 m以浅深度范围内的岩土导热系数和体积比热分层变化对中深层U型对接式换热井整个采暖期内出水温度和取热量的影响。结果表明:岩土导热系数分层对地下换热特性有较大影响,根据平均导热系数计算会高估井口出水温度和取热量,偏差值介于6 %~15 %;岩土体积比热分层对地下换热特性影响较小。在中深层U型对接式换热井的设计和传热性能分析中,应考虑地下分层的影响,建议分层数量不低于8层。
高小荣 , 李红岩 , 任小庆 , 孙彩霞 , 卢星辰 , 刘林 , 吕强强 , 许勇 , 董文斌 , 王泽沐 , 王荣康 , 苗瑞灿 . 岩土分层对中深层U型对接井换热性能的影响[J]. 油气藏评价与开发, 2023 , 13(6) : 703 -712 . DOI: 10.13809/j.cnki.cn32-1825/te.2023.06.001
The medium-deep geothermal exchanger featuring a U-shaped pipe configuration presents an optimal solution for geothermal energy heat exchange due to its capability to deliver higher temperature water, achieve greater heat extraction rates, and maintain minimal flow resistance. A layered analytical model for such exchanger is established based on the theory of thermal resistance in series methods. Experimental results are employed to validate the accuracy of this layered analytical model. By focusing on the Guanzhong Basin in Shaanxi Province as the focal point of research, the model investigates the influence of subterranean stratification in thermal conductivity and volumetric specific heat on the outlet water temperature and heat extraction rate throughout an entire heating period for a 3 000 m deep geothermal exchanger with U-shaped pipe. The findings reveal that the underground thermal conductivity stratification has a significant impact on the heat transfer performance. A simplistic approach using average thermal conductivity, as opposed to a detailed accounting of layered conductivities, results in an overestimation of outlet water temperature and heat extraction rate by approximately 6 % to 15 %. However, specific heat stratification exerts minimal influence on the subterranean heat transfer dynamics. This underscores the importance of considering the effects of underground thermal property stratification in the design and analysis of the heat transfer performance of a medium-deep geothermal exchanger with U-shaped pipe. For precise modeling and results, it is recommended to segment the underground area into at least eight distinct layers.
[1] | 江亿, 胡珊, 张洋, 等. 中国建筑节能年度发展研究报告[R]. 北京: 清华大学建筑节能研究中心, 2022. |
[1] | JIANG Yi, HU Shan, ZHANG Yang, et al. Annual development research report on building energy efficiency in China[R]. Beijing: Research Center for Building Energy Efficiency of Tsinghua University, 2022. |
[2] | 庞忠和, 汪集暘. 地热能迎空前发展机遇[N]. 中国科学报, 2021-01-06(3). |
[2] | PANG Zhonghe, WANG Jiyang. Geothermal energy welcomes unprecedented development opportunities[N]. China Science Daily, January 6, 2021(3). |
[3] | 宋先知, 李根生, 王高升, 等. 中深层地热能取热技术研究进展[J]. 科技导报, 2022, 40(20): 42-51. |
[3] | SONG Xianzhi, LI Gensheng, WANG Gaosheng, et al. Research progress on heat extraction technology for developing medium-deep geothermal energy[J]. Science&Technology Review, 2022, 40(20): 42-51. |
[4] | 汪集旸, 胡圣标, 庞忠和, 等. 中国大陆干热岩地热资源潜力评估[J]. 科技导报, 2012, 30(32): 25-31. |
[4] | WANG Jiyang, HU Shengbiao, PANG Zhonghe, et al. Estimate of geothermal resources potential for hot dry rock in the continental area of China[J]. Science&Technology Review, 2012, 30(32): 25-31. |
[5] | 李嘉舒, 戴传山, 雷海燕, 等. 我国中深层地热开发技术专利综述与分析[J]. 能源研究与信息, 2022, 38(4): 195-202. |
[5] | LI Jiashu, DAI Chuanshan, LEI Haiyan, et al. Patents review and analysis of mid-deep geothermal energy exploitation technology in China[J]. Energy Research and Information, 2022, 38(4): 195-202. |
[6] | 多吉. 典型高温地热系统——羊八井热田基本特征[J]. 中国工程科学, 2003, 5(1): 42-47. |
[6] | DUO Ji. The basic characteristics of the Yangbajing Geothermal Field: A typical high temperature geothermal system[J]. Engineering Science, 2003, 5(1): 42-47. |
[7] | 赵旭, 杨艳, 刘雨虹, 等. 全球地热产业现状与技术发展趋势[J]. 世界石油工业, 2020, 27(1): 53-57. |
[7] | ZHAO Xu, YANG Yan, LIU Yuhong, et al. Development trend and outlook of geothermal industry in the world[J]. World Petroleum Industry, 2020, 27(1): 53-57. |
[8] | 曹锐, 多吉, 李玉彬, 等. 我国中深层地热资源赋存特征、发展现状及展望[J]. 工程科学学报, 2022, 44(10): 1623-1631. |
[8] | CAO Rui, DUO Ji, LI Yubin, et al. Occurrence characteristics, development status, and prospect of deep high-temperature geothermal resources in China[J]. Chinese Journal of Engineering, 2022, 44(10): 1623-1631. |
[9] | 王沣浩, 蔡皖龙, 王铭, 等. 地热能供热技术研究现状及展望[J]. 制冷学报, 2021, 42(1): 14-22. |
[9] | WANG Fenghao, CAI Wanlong, WANG Ming, et al. Status and outlook for research on geothermal heating technology[J]. Journal of Refrigeration, 2021, 42(1): 14-22. |
[10] | 冉运敏, 卜宪标. 单井地热采暖系统岩石温度特性模拟研究[J]. 新能源进展, 2019, 7(2): 161-167. |
[10] | RAN Yunmin, BU Xianbiao. Simulation study on rock temperature characteristics of single well geothermal heating system[J]. Advances in New and Renewable Energy, 2019, 7(2): 161-167. |
[11] | 李超. 中深层地热能建筑供暖地埋管换热特性及运行参数优化[D]. 西安: 长安大学, 2022. |
[11] | LI Chao. Heat transfer characteristics and operating parameters optimization of buried pipes for building heating using geothermal energy in middle-deep layers[D]. Xi’an: Chang'an University, 2022. |
[12] | 李庭樑, 岑继文, 黄文博, 等. 超长重力热管传热性能实验研究[J]. 化工学报, 2020, 71(3): 997-1008. |
[12] | LI Tingliang, CEN Jiwen, HUANG Wenbo, et al. Experimental study on heat transfer performance of super long gravity heat pipe[J]. CIESC Journal, 2020, 71(3): 997-1008. |
[13] | 陈静平. 深层U型地热换热器换热过程模拟计算研究[D]. 西安: 西安建筑科技大学, 2012. |
[13] | CHEN Jingping. Simulation research on thermal process of deep U-pipe geothermal heat exchanger[D]. Xi'an: Xi'an University of Architecture and Technology, 2012. |
[14] | 李超, 官燕玲, 高海仁, 等. 纳米流体对U型深埋管换热特性影响的研究[J]. 太阳能学报, 2021, 42(1): 392-399. |
[14] | LI Chao, GUAN Yanling, GAO Hairen, et al. Study on influence of nanofluids on heat transfer characteristics of deep-buried U-bend pipes[J]. Acta Energiae Solaris Sinica, 2021, 42(1): 392-399. |
[15] | 李超, 官燕玲, 杨瑞涛, 等. U型深埋管固井层对埋管换热性能影响的研究[J]. 太阳能学报, 2021, 42(2): 267-273. |
[15] | LI Chao, GUAN Yanling, YANG Ruitao, et al. Study on influence of cementing layer on heat transfer performance of U-bend deep-buried pipe[J]. Acta Energiae Solaris Sinica, 2021, 42(2): 267-273. |
[16] | 李超, 江超, 杨瑞涛, 等. 埋深及连接管长度对U型深埋管换热的影响[J]. 太阳能学报, 2021, 42(7): 490-496. |
[16] | LI Chao, JIANG Chao, YANG Ruitao, et al. Effect of buried depth and connecting pipe length on deep-buried u-bend pipe heat transfer[J]. Acta Energiae Solaris Sinica, 2021, 42(7): 490-496. |
[17] | 王兴, 李超, 官燕玲, 等. 竖向U型深埋管建筑供暖连续及间歇运行的现场实验[J]. 区域供热, 2018, 194(3): 8-12. |
[17] | WANG Xing, LI Chao, GUAN Yanling, et al. In-situ experiment of continuous and intermittent operation of vertical U-bend deep-buried pipe to supply heat in buildings[J]. District Heating, 2018, 194(3): 8-12. |
[18] | 王伟. 深层U型地热井仿真模拟及取热性能研究[J]. 太阳能学报, 2022, 43(7): 477-484. |
[18] | WANG Wei. Study on simulation and heat removal performance of deep U-shaped geothermal geothermal well[J]. Acta Energiae Solaris Sinica, 2022, 43(7): 477-484. |
[19] | 鲍玲玲, 王雪, 刘俊, 等. 基于岩土纵向分层的中深层U型地埋管换热器取热性能研究[J]. 地球物理学进展, 2022, 37(4): 1371-1378. |
[19] | BAO Lingling, WANG Xue, LIU Jun, et al. Research on heat extraction performance of U-shaped underground heat exchanger based on longitudinal layering of rock and soil[J]. Progress in Geophysics, 2022, 37(4): 1371-1378. |
[20] | 杨世铭, 陶文铨. 传热学(第四版)[M]. 北京: 高等教育出版社, 2006. |
[20] | YANG Shiming, TAO Wenquan. Heat Transfer(Fourth Edition)[M]. Beijing: Higher Education Press, 2006. |
[21] | LI C, JIANG C, GUAN Y L. An analytical model for heat transfer characteristics of a deep-buried U-bend pipe and its heat transfer performance under different deflecting angles[J]. Energy, 2022, 244: 122682. |
[22] | 陕西省住房和城乡建设厅. 中深层地热地埋管供热系统应用技术规程: DBJ 61/T166—2020[S]. 北京: 中国建材工业出版社, 2020: 1. |
[22] | Department of housing and urban rural development of Shaanxi province. Technical regulation for medium deep geothermal buried pipe heating system: DBJ 61/T166-2020[S]. Beijing: China Building Materials Industry Press, 2020: 1. |
/
〈 | 〉 |