地热能开发与利用

地源热泵系统能效提升途径

  • 张育平 ,
  • 杨潇 ,
  • 刘俊 ,
  • 刘博洋 ,
  • 汤伏蛟 ,
  • 谭忆秋
展开
  • 1.陕西省煤田地质集团有限公司,自然资源部煤炭资源勘查与综合利用重点实验室,陕西 西安 710026
    2.哈尔滨工业大学交通科学与工程学院,黑龙江 哈尔滨 150006
    3.陕西中煤新能源有限公司,陕西 西安 710054
张育平(1966—),男,博士,教授级高工,从事地热能开发与利用的研究。地址:陕西省西安市经开区文景路26号,邮政编码:710026。E-mail: xazyp@163.com

收稿日期: 2023-03-13

  网络出版日期: 2024-01-03

基金资助

国家自然科学基金项目“大气环境作用下沥青路面水蒸发与渗流耦合行为及湿度演化规律研究”(52208433);陕西省秦创原“科学家+工程师”队伍建设项目“陕西省地热能高效利用技术‘科学家+工程师’队伍”(2022KXY-039);中国博士后科学基金特别资助项目“浅层地热源式寒区流体加热路面系统优化设计研究”(2021TQ0090)

Overview of solutions to improve efficiency of ground source heat pump system

  • Yuping ZHANG ,
  • Xiao YANG ,
  • Jun LIU ,
  • Boyang LIU ,
  • Fujiao TANG ,
  • Yiqiu TAN
Expand
  • 1. Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Natural Resources, Shaanxi Coal Geology Group Co., Ltd., Xi’an, Shaanxi 710026, China
    2. School of Transportation Science and Engineering, Haerbin Institute of Technology, Harbin, Heilongjiang 150006,China
    3. Shaanxi Zhongmei New Energy Co. Ltd., Xi’an, Shaanxi 710054, China

Received date: 2023-03-13

  Online published: 2024-01-03

摘要

浅层地热可被用于路面融雪除冰,建筑供热、制冷等。闭环垂直地埋管是浅层地热资源利用最常见形式,其在终端负荷作用下与岩土体进行热量交换。单根地埋管获取地热资源能力有限,多根埋管组合形式(地埋管群)被广泛应用于地源热泵系统。然而,地下温度场受管群与岩土换热性能影响,在设计、运行等不合理条件下可导致岩土体温度场不平衡,进而造成地源热泵系统能效降低,甚至失效。因此,管群设计、运行等方案优化是解决地温场不平衡问题的必要途径。基于国内外相关研究成果,梳理管群优化设计方法、储能和去能方法、辅助热源和冷源方法、运行控制策略。其中,管群优化设计方法主要聚焦管群间距设计、排布方式等;储能和去能方法主要介绍利用太阳能、工业废热等外部热源和冷源对地下岩土体进行加热和降温等的最新研究成果;辅助热源和冷源部分重点介绍太阳能、冷却塔等在地源热泵系统中的应用;运行控制策略主要分析地源热泵系统运行控制方案,包括峰点冷热负荷运行、间歇性运行、分区运行、系统控制策略等方案。总结了管群优化设计方法、运行控制策略等,剖析了各方案的优点与不足,可为管群岩土体温度场不平衡解决方案与地源热泵系统能效提升途径提供参考。

本文引用格式

张育平 , 杨潇 , 刘俊 , 刘博洋 , 汤伏蛟 , 谭忆秋 . 地源热泵系统能效提升途径[J]. 油气藏评价与开发, 2023 , 13(6) : 726 -740 . DOI: 10.13809/j.cnki.cn32-1825/te.2023.06.003

Abstract

Shallow geothermal energy, with applications ranging from road snow melting and deicing to building heating/cooling, primarily utilizes closed-loop vertical buried pipes for resource exploitation. These pipes function by exchanging heat with the subterranean zone under specific cooling or heating loads. Given the limited capacity of a single vertical ground heat exchanger to harness geothermal resources, arrays of these exchangers are more commonly employed to effectively tap into shallow geothermal resources. However, the underground temperature field can be significantly affected by the heat exchange process between the ground heat exchanger array and the surrounding soil. Improper design and operational conditions can lead to an imbalance in the underground temperature field, potentially resulting in energy deficiencies and the malfunctioning of Ground Source Heat Pump Systems(GSHPS). Therefore, optimizing the design and operation scheme of ground heat exchanger array is the key to solve the imbalance of underground temperature field. The review summarizes the domestic and foreign research results, outlining various methods for energy storage and removal, incorporating auxiliary heating and cooling sources, and exploring relevant optimization techniques. The borehole array design optimization methods include primarily the distance between the pipe and the borehole layout. The energy storage/removal section mainly introduces the latest research results of borehole heat exchanger array by using external heat/cold sources such as solar energy and industrial waste heat. The auxiliary method mainly describes the latest researches on the application of resources like solar energy and heating towers. The operation control strategy mainly analyzes the operation control of the ground source heat pump system, including the peak cooling and heating load operation, intermittent operation, partition operation, system control strategy, etc. By thoroughly examining these optimization approaches and operational control strategies, the review provides a comprehensive analysis of the advantages and disadvantages of each scheme. This detailed evaluation serves as a valuable reference for improving the energy efficiency of GSHPS, ensuring sustainable and effective utilization of shallow geothermal resources.

参考文献

[1] 中华人民共和国国家发展和改革委员会环资司. 2022年中国能源生产和消费相关数据[R/OL].(2023-03-02)[2023-03-13]. https://www.ndrc.gov.cn/fggz/hjyzy/jnhnx/202303/t20230302_1350587.html.
[1] Environmental Resources Department of the National Development and Reform Commission of the People's Republic of China. Relevant data on China's energy production and consumption in 2022[R/OL].(2023-03-02)[2023-03-13]. https://www.ndrc.gov.cn/fggz/hjyzy/jnhnx/202303/t20230302_1350587.html.
[2] 王贵玲, 陆川. 碳中和目标驱动下地热资源开采利用技术进展[J]. 地质与资源, 2022, 31(3): 412-341.
[2] WANG Guiling, LU Chuan. Progress in geothermal resource extraction and utilization technology driven by carbon neutrality goals[J]. Geology and Resources, 2022, 31(3): 412-341.
[3] 汪集旸. 地热学及其应用[M]. 北京: 科学出版社, 2015.
[3] WANG Jiyang. Geothermal science and its applications[M]. Beijing: Science Press, 2015.
[4] TAN Y Q, ZHANG C, LYU H J, et al. Experimental and numerical analysis of the critical heating strategy for hydronic heated snow melting airfield runway[J]. Applied Thermal Engineering, 2020, 178: 115508.
[5] ZHANG C, TAN Y Q, CHEN F C, et al. Long-term thermal analysis of an airfield-runway snow-melting system utilizing heat-pipe technology[J]. Energy Conversion and Management, 2019, 186: 473-486.
[6] 穆天洋. 略论低碳市政技术对地缘政治与国际关系的影响[J]. 市政技术, 2022, 40(8): 271-275.
[6] MU Tianyang. On the impact of low carbon municipal technology on geopolitics and international relations[J]. Municipal Technology, 2022, 40(8): 271-275.
[7] ESEN H, INALLI M, ESEN M. A techno-economic comparison of ground-coupled and air-coupled heat pump system for space cooling[J]. Building and Environment, 2007, 42(5): 1955-1965.
[8] 李嘉舒, 戴传山, 雷海燕, 等. 地埋管换热器动态热负荷下地层温度场的解析解[J]. 水文地质工程地质, 2023, 50(2): 198-206.
[8] LI Jiashu, DAI Chuanshan, LEI Haiyan, et al. Analytical solution of formation temperature field under dynamic thermal load of buried pipe heat exchanger[J]. Hydrogeological Engineering Geology, 2023, 50(2): 198-206.
[9] LUND J W, TOTH A N. Direct utilization of geothermal energy 2020 worldwide review[J]. Geothermics, 2021, 90: 101915.
[10] 张杰, 马培发, 莫丽, 等. 竖进平出型地埋管群设计及换热特性研究[J]. 工程热物理学报, 2022, 43(10): 2734-2741.
[10] ZHANG Jie, MA Peifa, MO Li, et al. Design and heat transfer characteristics study of vertical inlet and horizontal outlet buried pipe group[J]. Journal of Engineering Thermophysics, 2022, 43(10): 2734-2741.
[11] LIU Z J, XU W, QIAN C, et al. Investigation on the feasibility and performance of ground source heat pump(GSHP) in three cities in cold climate zone, China[J]. Renewable Energy, 2015, 84: 89-96.
[12] RYBACH L, EUGSTER W J. Sustainability aspects of geothermal heat pump operation, with experience from Switzerland[J]. Geothermics, 2010, 39(4): 365-369.
[13] GULTEKIN A, AYDIN M, SISMAN A. Effects of arrangement geometry and number of boreholes on thermal interaction coefficient of multi-borehole heat exchangers[J]. Applied Energy, 2019, 237: 163-170.
[14] NARANJO-MENDOZA C, OYINLOLA M A, WRIGHT A J, et al. Experimental study of a domestic solar-assisted ground source heat pump with seasonal underground thermal energy storage through shallow boreholes[J]. Applied Thermal Engineering, 2019, 162: 114218.
[15] SI Q, OKUMIYA M, ZHANG X. Performance evaluation and optimization of a novel solar-ground source heat pump system[J]. Energy and Buildings, 2014, 70: 237-245.
[16] LAZZARI S, PRIARONE A, ZANCHINI E. Long-term performance of BHE(borehole heat exchanger) fields with negligible groundwater movement[J]. Energy, 2010, 35(12): 4966-4974.
[17] CHEN S, CAI W L, WITTE F, et al. Long-term thermal imbalance in large borehole heat exchangers array: A numerical study based on the Leicester project[J]. Energy and Buildings, 2020: 110518.
[18] LI C F, MAO J F, ZHANG H, et al. Effects of load optimization and geometric arrangement on the thermal performance of borehole heat exchanger fields[J]. Sustainable Cities and Society, 2017, 35: 25-35.
[19] GIORDANO N, RAYMOND J. Alternative and sustainable heat production for drinking water needs in a subarctic climate(Nunavik, Canada): Borehole thermal energy storage to reduce fossil fuel dependency in off-grid communities[J]. Applied Energy, 2019, 252: 113463.
[20] ZHANG H Z, HAN Z W, JI M Z, et al. Analysis of influence of pipe group arrangement and heat exchanger type on operation performance of the ground source heat pump[J]. Geothermics, 2021, 97: 102237.
[21] CIMMINO M, BERNIER M. Effects of unequal borehole spacing on the required borehole length[J]. ASHRAE Transactions, 2014, 120:158-173.
[22] 郭敏, 刁乃仁, 朱科, 等. 冷热负荷不平衡地区地热换热器设计及其运行对策[J]. 北京工业大学学报, 2019, 45(1): 88-94.
[22] GUO Min, DIAO Nairen, ZHU Ke, et al. Design and operation strategies of geothermal heat exchangers in areas with imbalanced cooling and heating loads[J]. Journal of Beijing University of Technology, 2019, 45(1): 88-94.
[23] 肖立业, 张京业, 聂子攀, 等. 地下储能工程[J]. 地下储能工程, 2022, 41(2): 1-9.
[23] XIAO Liye, ZHANG Jingye, NIE Zipan, et al. Underground energy storage engineering[J]. Underground Energy Storage Engineering, 2022, 41(2): 1-9.
[24] GUO F, ZHU X Y, ZHANG J Y, et al. Large-scale living laboratory of seasonal borehole thermal energy storage system for urban district heating[J]. Applied Energy, 2020, 264: 114763.
[25] OLSSON S. The sunclay and Kullavik projects - Heat storage in clay at low and high temperature[C]// First E.C. Conference on Solar Heating, Amsterdam, 1984.
[26] PELTOLA S S, LUND P D, ROUTTI J T F. First year operating experience from Kerava solar village[J]. International Journal of Ambient Energy, 1985, 6: 117-122.
[27] NORDELL B. Borehole heat store design optimization[D]. Ume? kommun, Sweden: Lule? Tekniska Universitet, 1994.
[28] GEHLIN S. Borehole thermal energy storage[M]// REES S J. Advances in Ground-Source Heat Pump Systems. Lund, Sweden: Woodhead Publishing, 2016: 295-327.
[29] REUSS M. The use of borehole thermal energy storage(BTES) systems[J]. Advances in Thermal Energy Storage Systems, 2015: 117-147.
[30] DALENBACK J O, HELLSTROM G, LUNDIN S, et al. Borehole heat storage for the Anneberg solar heated residential district in Danderyd, Sweden[C]// Terrastock 2000. Proceedings of the 8th International Conference on Thermal Energy Storage, held in Stuttgart, Germany, August 28 until September 1, 2000.
[31] REUSS M, BEUTH W, SCHMIDT M, et al. Solar district heating with seasonal storage in Attenkirchen[C]// OTTI-13 Symposium Thermische Solarenergie, held in Bad Staffelstein(Germany), 14-16 May, 2003.
[32] BAUER D, MARX R, NU?BICKER-LUX J, et al. German central solar heating plants with seasonal heat storage[J]. Solar Energy, 2010, 84: 612-623.
[33] SIBBITT B, MCCLENAHAN D, DJEBBAR R, et al. The performance of a high solar fraction seasonal storage district heating system: Five years of operation[J]. Energy Procedia, 2012, 30: 856-865.
[34] NORDELL B, ANDERSSON O, RYDELL L, et al. Long-term performance of the HTBTES in Emmaboda, Sweden[C]// 13th International Energy Agency Energy Storage Greenstock Conference, held in Beijing, China, 2015.
[35] TORDRUP K W, POULSEN S E, BJ?RN H. An improved method for upscaling borehole thermal energy storage using inverse finite element modelling[J]. Renewable Energy, 2017, 105: 13-21.
[36] GUO F, YANG X. Long-term performance simulation and sensitivity analysis of a large-scale seasonal borehole thermal energy storage system for industrial waste heat and solar energy[J]. Energy and Buildings, 2021, 236: 110768.
[37] SHAH S K, AYE L, RISMANCHI B. Multi-objective optimisation of a seasonal solar thermal energy storage system for space heating in cold climate[J]. Applied Energy, 2020, 268: 115047.
[38] SOMMERFELDT N, MADANI H. In-depth techno-economic analysis of PV/Thermal plus ground source heat pump systems for multi-family houses in a heating dominated climate[J]. Solar Energy, 2019, 190: 44-62.
[39] BERTRAM E. Unglazed PVT collectors as additional heat source in heat pump systems with borehole heat exchanger[J]. Energy Procedia, 2012: 10.
[40] BAKKER M, ZONDAG H A, ELSWIJK M J, et al. Performance and costs of a roof-sized PV/thermal array combined with a ground coupled heat pump[J]. Solar Energy, 2005, 78(2): 331-339.
[41] 朱大龙, 刁乃仁. 太阳能-地源热泵系统的运行模拟[J]. 建筑节能, 2016, 44(5): 26-30.
[41] ZHU Dalong, DIAO Nairen. Simulation of the operation of a solar ground source heat pump system[J]. Building Energy Efficiency, 2016, 44(5): 26-30.
[42] YOU T, WANG B L, WU W, et al. A new solution for underground thermal imbalance of ground-coupled heat pump systems in cold regions: Heat compensation unit with thermosyphon[J]. Applied Thermal Engineering, 2014, 64(1-2): 283-292.
[43] XU X F, ZHANG X L, XIAO Y J. Research on influence of high and low temperature heat sources for heat transfer characteristics of pulsating heat pipe cold storage device[J]. Heat and Mass Transfer, 2022, 58(2): 233-246.
[44] XU L L, PU L, ZHANG S Q, et al. Hybrid ground source heat pump system for overcoming soil thermal imbalance: A review[J]. Sustainable Energy Technologies and Assessments, 2021, 44: 101098.
[45] ESLAMI-NEJAD P, BERNIER M. A preliminary assessment on the use of phase change materials around geothermal Boreholes[J]. ASHRAE Transactions, 2013, 19: 11.
[46] QI D, PU L, SUN F T, et al. Numerical investigation on thermal performance of ground heat exchangers using phase change materials as grout for ground source heat pump system[J]. Applied Thermal Engineering, 2016, 106: 1023-1032.
[47] DEHDEZI P K, HALL M R, DAWSON A R. Enhancement of soil thermo-physical properties using microencapsulated phase change materials for ground source heat pump applications[J]. Applied Mechanics and Materials, 2011, 110-116: 1191-1198.
[48] ALKHWILDI A, ELHASHMI R, CHIASSON A. Parametric modeling and simulation of low temperature energy storage for cold-climate multi-family residences using a geothermal heat pump system with integrated phase change material storage tank[J]. Geothermics, 2020, 86: 101864.
[49] BONAMENTE E, AQUINO A, COTANA F. A PCM thermal storage for ground-source heat pumps: Simulating the system performance via CFD approach[J]. Energy Procedia, 2016, 101: 1079-1086.
[50] ZHANG M K, LIU X B, BISWAS K, et al. A three-dimensional numerical investigation of a novel shallow bore ground heat exchanger integrated with phase change material[J]. Applied Thermal Engineering, 2019, 162: 114297.
[51] NI L, SONG W, ZENG F C, et al. Energy saving and economic analyses of design heating load ratio of ground source heat pump with gas boiler as auxiliary heat source[C]// International Conference on Electric Technology and Civil Engineering(ICETCE), 2011, Lushan, China: 1197-1200.
[52] YANG W B, SUN L L, CHEN Y P. Experimental investigations of the performance of a solar-ground source heat pump system operated in heating modes[J]. Energy and Buildings, 2015, 89: 97-111.
[53] 胡松涛, 徐伟平, 佟振, 等. 应用于地铁隧道的毛细管换热器降温效果模拟研究[J]. 青岛理工大学学报, 2019, 40(5): 78-84.
[53] HU Songtao, XU Weiping, TONG Zhen, et al. Simulation study on the cooling effect of capillary heat exchangers applied in subway tunnels[J]. Journal of Qingdao University of Technology, 2019, 40(5): 78-84.
[54] 骆祖江, 杜菁菁. 基于热平衡分析的地埋管地源热泵换热方案模拟优化[J]. 农业工程学报, 2018, 34(13): 246-255.
[54] LUO Zujiang, DU Jingjing. Simulation and optimization of heat transfer schemes for buried pipe ground source heat pumps based on heat balance analysis[J]. Journal of Agricultural Engineering, 2018, 34(13): 246-255.
[55] LIU Z J, LI Y W, XU W, et al. Performance and feasibility study of hybrid ground source heat pump system assisted with cooling tower for one office building based on one Shanghai case[J]. Energy, 2019, 173: 28-37.
[56] CUI W Z, ZHOU S Y, LIU X Y. Optimization of design and operation parameters for hybrid ground-source heat pump assisted with cooling tower[J]. Energy and Buildings, 2015: 10.
[57] 朱立东, 赵蕾, 王振宇. 冷却塔辅助地源热泵系统的控制策略优化[J]. 建筑科学, 2014, 30(10): 31-35.
[57] ZHU Lidong, ZHAO Lei, WANG Zhenyu. Optimization of control strategy for cooling tower assisted ground source heat pump system[J]. Architecture Science, 2014, 30(10): 31-35.
[58] HSIAO M J, KUO Y F, SHEN C C, et al. Performance enhancement of a heat pump system with ice storage subcooler[J]. International Journal of Refrigeration, 2010, 33(2): 251-258.
[59] LI W X, LI X D, WANG Y, et al. An integrated predictive model of the long-term performance of ground source heat pump(GSHP) systems[J]. Energy and Buildings, 2018, 159: 309-318.
[60] MIGLANI S, OREHOUNIG K, CARMELIET J. A methodology to calculate long-term shallow geothermal energy potential for an urban neighbourhood[J]. Energy and Buildings, 2018, 159: 462-473.
[61] MENSAH K, JANG Y S, CHOI J M. Assessment of design strategies in a ground source heat pump system[J]. Energy and Buildings, 2017, 138: 301-308.
[62] CARVALHO A D, MOURA P, VAZ G C, et al. Ground source heat pumps as high efficient solutions for building space conditioning and for integration in smart grids[J]. Energy Conversion and Management, 2015, 103: 991-1007.
[63] ALAICA A A, DWORKIN S B. Characterizing the effect of an off-peak ground pre-cool control strategy on hybrid ground source heat pump systems[J]. Energy and Buildings, 2017, 137: 46-59.
[64] CHOI J C, LEE S R, LEE D S. Numerical simulation of vertical ground heat exchangers: Intermittent operation in unsaturated soil conditions[J]. Computers and Geotechnics, 2011, 38(8): 949-958.
[65] 杨卫波, 施明恒, 陈振乾. 非连续运行工况下垂直地埋管换热器的换热特性[J]. 东南大学学报(自然科学版), 2013, 43(2): 328-333.
[65] YANG Weibo, SHI Mingheng, CHEN Zhenqian. Heat transfer characteristics of vertical buried tube heat exchangers under discontinuous operating conditions[J]. Journal of Southeast University(Natural Science Edition), 2013, 43(2): 328-333.
[66] 张国柱, 夏才初, 孙猛, 等. 寒区隧道地源热泵供热系统及优化分析[J]. 同济大学学报, 2012, 40(4): 610-615.
[66] ZHANG Guozhu, XIA Caichu, SUN Meng, et al. Ground source heat pump heating system and optimization analysis for tunnels in cold regions[J]. Journal of Tongji University, 2012, 40(4): 610-615.
[67] 袁艳平, 雷波, 曹晓玲, 等. 间歇运行对U形地埋管换热器换热特性的影响[J]. 西南交通大学学报, 2010, 45(3): 393-399.
[67] YUAN Yanping, LEI Bo, CAO Xiaoling, et al. The influence of intermittent operation on the heat transfer characteristics of U-shaped buried tube heat exchangers[J]. Journal of Southwest Jiaotong University, 2010, 45(3): 393-399.
[68] Jalaluddin, MIYARA A. Thermal performance investigation of several types of vertical ground heat exchangers with different operation mode[J]. Applied Thermal Engineering, 2012, 33-34: 167-174.
[69] 王勇. 动态负荷下地源热泵性能研究[D]. 重庆: 重庆大学, 2006.
[69] WANG Yong. Research on the performance of ground source heat pump under dynamic load[D]. Chongqing: Chongqing University, 2006.
[70] YU M K, ZHANG K, CAO X Z, et al. Zoning operation of multiple borehole ground heat exchangers to alleviate the ground thermal accumulation caused by unbalanced seasonal loads[J]. Energy and Buildings, 2016, 110: 345-352.
[71] COEN T, FRAN?OIS B, GERARD P. Analytical solution for multi-borehole heat exchangers field including discontinuous and heterogeneous heat loads[J]. Energy and Buildings, 2021, 253: 111520.
[72] YOU T, ZENG W T. Zoning operation of energy piles to alleviate the soil thermal imbalance of ground source heat pump systems[J]. Energy and Built Environment, 2023, 4(1): 57-63.
[73] 吴晅, 周雅慧, 路子业, 等. 地埋管群全年蓄热取热同步模式下岩土传热特性[J]. 地下空间与工程学报, 2020, 16(1): 274-287.
[73] WU Xuan, ZHOU Yahui, LU Ziye, et al. Heat transfer characteristics of rock and soil under the synchronous mode of annual heat storage and extraction of buried pipe groups[J]. Journal of Underground Space and Engineering, 2020, 16(1): 274-287.
[74] NOYE S, MULERO MARTINEZ R, CARNIELETTO L, et al. A review of advanced ground source heat pump control: Artificial intelligence for autonomous and adaptive control[J]. Renewable and Sustainable Energy Reviews, 2022, 153: 111685.
[75] CORBERAN J M, FINN D P, MONTAGUD C M, et al. A quasi-steady state mathematical model of an integrated ground source heat pump for building space control[J]. Energy and Buildings, 2011, 43(1): 82-92.
[76] MOKHTAR M, STABLES M, LIU X, et al. Intelligent multi-agent system for building heat distribution control with combined gas boilers and ground source heat pump[J]. Energy and Buildings, 2013, 62: 615-626.
[77] MADANI H, CLAESSON J, LUNDQVIST P. A descriptive and comparative analysis of three common control techniques for an on/off controlled ground source heat pump(GSHP) system[J]. Energy and Buildings, 2013, 65: 1-9.
[78] CHIASSON A D, JOHNSON D W, YAVUZTURK C C, et al. Optimization of the ground thermal response in hybrid geothermal heat pump systems[J]. ASHRAE Transactions, 2010, 116: 212-524.
[79] GANG W J, WANG J B, WANG S W. Performance analysis of hybrid ground source heat pump systems based on ANN predictive control[J]. Applied Energy, 2014, 136: 1138-1144.
文章导航

/