地热能开发与利用

大民屯凹陷沈水501中深层地热田三维地质建模技术研究

  • 丛淑飞 ,
  • 周宏 ,
  • 赵艳 ,
  • 靳海龙 ,
  • 刘鹏 ,
  • 吴荣碧 ,
  • 陈元春
展开
  • 中国石油辽河油田环境工程公司,辽宁 盘锦 124010
丛淑飞(1973—),男,高级工程师,主要从事地热开发技术方面的研究。地址:辽宁省盘锦市兴隆台区兴隆台街140号,邮政编码:124010。E-mail:congsf@petrochina.com.cn

收稿日期: 2023-07-25

  网络出版日期: 2024-01-03

3D geological modeling technology of medium-deep geothermal field in Shenshui 501 geothermal field in Damintun Sag

  • Shufei CONG ,
  • Hong ZHOU ,
  • Yan ZHAO ,
  • Hailong JIN ,
  • Peng LIU ,
  • Rongbi WU ,
  • Yuanchun CHEN
Expand
  • Petrochina Liaohe Oilfield Environmental Engineering Company, Panjin, Liaoning 124010, China

Received date: 2023-07-25

  Online published: 2024-01-03

摘要

随着地热开发的不断深入,持续高效开发地热资源,实现地热资源的采灌均衡,是亟待解决的问题。在Petrel(勘探开发一体化软件平台)这一石油行业地质建模软件基础上开发出适合地热地质建模的应用。应用多种地热地质资料在Petrel软件建立地学平台,开展地热地质要素研究,最大限度地集成多种资料信息,提高了地热地质要素的研究水平。将规模比较小的油气藏建模拓宽到建立大规模热储层模型,不但保证建模精度,在规模上也满足地热地质的需要。能够根据地热地质概念,利用多种信息,采用确定性建模和随机建模相结合方式,建立热储层温度场模型、压力场模型和有效热储层模型,形成了用Petrel软件建立热储层地质模型的方法。利用三维地质模型计算有效热储层资源量,受储层非均质的影响较小,更符合地下真实情况。准确的热储层三维地质模型及资源量评价,为辽河大民屯凹陷区热藏数值模拟及热藏开发方案的制定提供了扎实的地质基础,为科学开发利用该地区地热资源提供了数据支撑。

本文引用格式

丛淑飞 , 周宏 , 赵艳 , 靳海龙 , 刘鹏 , 吴荣碧 , 陈元春 . 大民屯凹陷沈水501中深层地热田三维地质建模技术研究[J]. 油气藏评价与开发, 2023 , 13(6) : 741 -748 . DOI: 10.13809/j.cnki.cn32-1825/te.2023.06.004

Abstract

As geothermal resource development continues to advance, addressing the challenge of sustainably and efficiently harnessing these resources becomes increasingly critical. This involves achieving a balance between the exploration and sustainable use(or "irrigation") of geothermal resources. To this end, the application of Petrel, a geological modeling software originally designed for the petroleum industry, has been adapted for geothermal geological modeling, offering a promising solution. The adaptation of Petrel for geothermal purposes involves establishing a geospatial platform within the software to manage and analyze a wide range of geothermal geological data. This platform enables comprehensive research into geothermal geological elements by integrating diverse data sets to the fullest extent, thereby enhancing the quality and scope of geothermal geological studies. This approach involves scaling up from traditional small-scale oil and gas reservoir modeling to large-scale thermal reservoir modeling. Such a transition not only maintains the accuracy of the models but also aligns with the scale requirements unique to geothermal geology. Utilizing Petrel, models of the thermal reservoir temperature field, pressure field, and effective thermal reservoir can be constructed. This is achieved by combining various types of data and employing both deterministic and stochastic modeling techniques, thereby establishing a robust method for thermal reservoir geological modeling using Petrel. A key advantage of employing a 3D geological model for calculating effective thermal reservoir resources is its reduced sensitivity to reservoir heterogeneity. This approach more accurately reflects real subterranean conditions, providing a more reliable basis for resource evaluation. The resulting accurate 3D geological models and resource assessments lay a solid foundation for the numerical simulation of thermal reservoirs and the development of comprehensive thermal reservoir management plans. This, in turn, supports the scientific and sustainable exploitation and utilization of geothermal resources in the area, ensuring their efficient and responsible development.

参考文献

[1] 李青元, 张洛宜, 曹代勇, 等. 三维地质建模的用途、现状、问题、趋势与建议[J]. 地质与勘探, 2016, 52(4): 759-767.
[1] LI Qingyuan, ZHANG Luoyi, CAO Daiyong, et al. Usage, status, problems, trends and suggestions of 3D geological modeling[J]. Geology and Exploration, 2016, 52(4): 759-767.
[2] 王君照, 李胜涛, 岳冬冬, 等. 基于GIS与GOCAD的天津双窑凸起构造区热储三维地质建模[J]. 科学技术与工程, 2023, 23(14): 5887-5902.
[2] WANG Junzhao, LI Shengtao, YUE Dongdong, et al. Tree dimensional geological modeling of thermal reservoir of Shuangyao uplift structural area in Tianjin based on GIS and GOCAD[J]. Science Technology and Engineering, 2023, 23(14): 5887 -5902.
[3] 王凯, 张杰, 白大为, 等. 雄安新区地热地质模型探究:来自地球物理的证据[J]. 中国地质, 2021, 48(5): 1453-1468.
[3] WANG Kai, ZHANG Jie, BAI Dawei, et al. Geothermal-geological model of Xiong'an New Area: Evidence from geophysics[J]. Geology in China, 2021, 48(5): 1453-1468.
[4] 刘春华, 杨丽芝. 山东临清市地热地质条件分析及地热概念模型[J]. 分析研究, 2008, 3(1): 27-30.
[4] LIU Chunhua, YANG Lizhi. Analysis of the geothermal conditions and a geothermal conceptual model of Linqing County, Shandong Province[J]. Analytical Investigation, 2008, 3(1): 27-30.
[5] 朱振洲, 雷晓东, 武雄, 等. 基于三维地质建模的北京市昌平新城地热资源量评价[J]. 现代地质, 2020, 34(1): 207-214.
[5] ZHU Zhenzhou, LEI Xiaodong, WU Xiong, et al. Geothermal resource evaluation in Changping new town, Beijing: Perspective from 3D geological modeling[J]. Geoscience, 2020, 34(1): 207-214.
[6] 赵杰, 郭清海. 基于三维地质建模的地热资源潜力评价: 以施甸地热区为例[J]. 地球科学, 2023, 48(3): 1107-1117.
[6] ZHAO Jie, GUO Qinghai. Geothermal resources evaluation based on 3D geological modeling: The case of Shidian geothermal area[J]. Earth Science, 2023, 48(3): 1107-1117.
[7] 马峰, 王贵玲, 魏帅超, 等. 2018年地热勘探开发热点回眸[J]. 科技导报, 2019, 37(1): 134-143.
[7] MA Feng, WANG Guiling, WEI Shuaichao, et al. Summary of hot research topics in geothermal exploitation in 2018[J]. Science & Technology Review, 2019, 37(1): 134-143.
[8] 康凤新, 马哲民, 史启朋, 等. 岩溶热储地热水可更新能力及采灌均衡可持续开采量: 以菏泽潜凸起地热田为例[J]. 地球科学, 2023, 48(3): 1118-1137.
[8] KANG Fengxin, MA Zhemin, SHI Qipeng, et al. Renewable capacity of Karst geothermal water and production-reinjection balanced resources evaluation: A case study of Heze buried uplift geothermal fields[J]. Earth Science, 2023, 48(3): 1118-1137.
[9] 秦耀军, 张平平. 山东省砂岩热储地热资源开发利用模式探讨[J]. 山东国土资源, 2018, 34(10): 93-98.
[9] QIN Yaojun, ZHANG Pingping. Development and utilization of geothermal resources in the middle and deep layers of Shandong province[J]. Shandong Land and Resources, 2018, 34(10): 93-98.
[10] 孙彭光. 大名地热田地质概念模型及井网模拟[J]. 长江大学学报(自然科学版), 2018, 15(13): 11-16.
[10] SUN Pengguang. Geological conceptual model and well pattern simulation of Daming geothermal field[J]. Journal of Yangtze University(Natural Sciences Edition), 2018, 15(13): 11-16.
[11] 王宽, 周明泽, 张一博, 等. 郑州市主城区与东部新城区地热资源数值模拟研究[J]. 能源与环保, 2023, 45(7): 188-197.
[11] WANG Kuan, ZHOU Ming, ZHANG Yibo, et al. Numerical simulation study of geothermal resources in main urban area and eastern new urban area of Zhengzhou City[J]. China Energy and Environmental Protection, 2023, 45(7): 188-197.
[12] 贾爱林, 郭智, 郭建林, 等. 中国储层地质模型30年[J]. 石油学报, 2021, 42(11): 1506-1515.
[12] JIA Ailin, GUO Zhi, GUO Jianlin, et al. Research achievements on reservoir geological modeling of China in the past three decades[J]. Acta PetroleI Sinica, 2021, 42(11): 1506-1515.
[13] 刘波. 柴达木盆地跃西油田三维地质建模[J]. 勘探开发, 2023, 30(1): 144-146.
[13] LIU Bo. Three dimensional geological modeling of Yuexi Oilfield in Qaidam Basin[J]. Exploration and Development, 2023, 30(1): 144-146.
[14] 张瑞, 赵永刚, 杜进忠, 等. 鄂尔多斯盆地西南部 Y33 区块储层地质建模研究[J]. 石油化工应用, 2022, 41(3): 76-86.
[14] ZHANG Rui, ZHAO Yonggang, Du Jinzhong, et al. Research on reservoir geological modeling of Y33 block in the southwest of Ordos Basin[J]. Petrochemical Industry Application, 2022, 41(3): 76-86.
[15] 丁志刚. 辽宁省新民市大民屯地区地热资源前景分析[J]. 中国矿业, 2012, 21(2): 119-121.
[15] DING Zhigang. The foreground analysis of geothermal resources of Damintun area of Xinmin city in Liaoning[J]. China Mining Magazine, 2012, 21(2): 119-121.
[16] 邓春来. 辽河油田地热资源评价及其配套技术研究[D]. 北京: 中国地质大学, 2008.
[16] DENG Chunlai. Geothermal resource evaluation of Liaohe Oilfield and research for related technology[D]. Beijing: China University of Geosciences, 2008.
[17] 李建华, 余杰, 王锐, 等. 大民屯凹陷源控油气作用及资源潜力预测[J]. 科学技术与工程, 2012, 12(12): 2964-2970.
[17] LI Jianhua, YU Jie, WANG Rui, et al. Hydrocarbon-controlling function of source rock and resource potential in the Damintun Depression[J]. Science Technology and Engineering, 2012, 12(12): 2964-2970.
[18] 陈振岩, 陈永成, 郭彦民, 等. 大民屯凹陷精细勘探实践与认识[M]. 北京: 石油工业出版社, 2007: 3-23.
[18] CHEN Zhenyan, CHEN Yongcheng, GUO Yanmin, et al. Practice and understanding of detailed exploration of Damintun Depression[M]. Beijing: Petroleum Industry Press, 2007: 3-23.
[19] 张洪梅. 辽宁大民屯凹陷地热资源形成条件分析[J]. 地质与资源, 2013, 22(1): 25-29.
[19] ZHANG Hongmei. Analysis on the formation conditions of geothermal resources in Damintun Sag, Liaoning Province[J]. Geology and Resources, 2013, 22(1): 25-29.
[20] 倪金, 冯丽杰, 闫宝强, 等. 辽宁省中新生代盆地地下热水富集规律研究[J]. 地质与资源, 2006, 15(1): 57-61.
[20] NI Jin, FENG lijie, YAN Baoqiang, et al. Study on enrichment law of underground hot water in Meso-Cenozoic basins in Liaoning Province[J]. Geology and Resources, 2006, 15(1): 57-61.
[21] 张晓坤. 随机模拟在三维地质建模中的应用[D]. 北京: 中国地质大学, 2009.
[21] ZHANG Xiaokun. Application of stochastic simulation in 3D geological modeling[D]. Beijing: China University of Geosciences, 2009.
[22] 罗婷婷, 周立发, 焦尊生, 等. 相控随机建模技术在鄂尔多斯盆地低渗透油藏的应用[J]. 现代地质, 2016, 30(3): 655-662.
[22] LUO Tingting, ZHOU Lifa, JIAO Zunsheng, et al. Application of facies-controlled property modeling technologies to characterization of low permeability oilfield in the Ordos Basin[J]. Geoscience, 2016, 30(3): 655-662.
[23] 胡晓庆, 宋子怡, 李晨, 等. 储层地质建模的质量控制[J]. 石化技术, 2021, 44(7): 121-122.
[23] HU Xiaoqing, SONG Ziyi, LI Chen, et al. Quality control of reservoir geological modeling[J]. Petrochemical Industry Technology, 2021, 44(7): 121-122.
文章导航

/