综合研究

雅克拉区块潜山储集体类型动态量化表征及自动识别

  • 任宏 ,
  • 李伟奇 ,
  • 虢中春 ,
  • 杨小腾 ,
  • 徐健 ,
  • 王婋
展开
  • 1.中国石化西北油田分公司雅克拉采气厂,新疆 库车 842017
    2.中国地质大学(武汉)石油工程系,湖北 武汉 430074
    3.中国石油大港油田分公司,天津 300280
任宏(1987—),女,本科,高级工程师,从事油气藏地质研究与开发管理工作。地址:新疆库车市雅克拉采气厂,邮政编码:842017。E-mail:renhong2023@163.com

收稿日期: 2022-12-20

  网络出版日期: 2024-01-03

Dynamic quantitative characterization and automatic identification of the buried hill reservoir types in Yakela block

  • Hong REN ,
  • Weiqi LI ,
  • Zhongchun GUO ,
  • Xiaoteng YANG ,
  • Jian XU ,
  • Xiao WANG
Expand
  • 1. Sinopec Northwest Oilfield Company Yakela gasfield, Kuqa, Xinjiang 842017, China
    2. China University of Geosciences (Wuhan), Department of Petroleum Engineering, Wuhan, Hubei 430074, China
    3. PetroChina Dagang Oilfield company, Tianjin 300280, China

Received date: 2022-12-20

  Online published: 2024-01-03

摘要

塔河油田缝洞型碳酸盐岩油藏原油储量丰富,受构造及岩溶作用控制,储集体类型多样,非均质性强,不同类型储集体具有各自的开发特征,准确识别储集体类型是后续生产措施制定和油藏有效开发的基本前提。针对塔河油田雅克拉区块潜山碳酸盐岩油气藏储集体类型判别的实际需求提出一套储集体类型动态识别方法,基于塔河油田生产井动态数据分析,在单井开发阶段划分的基础上,提取与储集体类型相关性强的弹性驱初期产油量、弹性驱时间、弹性驱累计产油量、弹性驱产量月递减率4项动态参数作为判别指标,通过聚类分析形成动态参数量化标准,最终结合人工神经网络技术实现基于动态资料的储集体类型自动批量识别,获得的储集体识别结果与钻录井和地球物理资料确定的储集体类型吻合度达80 %以上。该自动识别方法具有参数明确、识别结果准确性高、可操作性强的特点,可辅助地质资料对储集体进行更准确的判定,更可应用于地质资料较少地区的碳酸盐岩油藏储集体研究,为油藏有效开发提供科学依据。

本文引用格式

任宏 , 李伟奇 , 虢中春 , 杨小腾 , 徐健 , 王婋 . 雅克拉区块潜山储集体类型动态量化表征及自动识别[J]. 油气藏评价与开发, 2023 , 13(6) : 789 -800 . DOI: 10.13809/j.cnki.cn32-1825/te.2023.06.010

Abstract

Tahe Oilfield, known for its substantial crude oil reserves, features fracture-vuggy carbonate reservoirs with diverse and heterogeneous characteristics shaped by structural and karstic influences. Each reservoir type within this field exhibits distinct development traits, making the precise identification of these reservoir types crucial for devising effective production strategies and optimizing oil reservoir development. However, the identification of reservoirs through drilling and geophysical data is challenging and costly, hence, this paper focuses on the dynamic identification of the vuggy, fractured-vuggy, and fractured reservoirs in the buried hill carbonate reservoirs in the Yakela block of Tahe Oilfield. The research initially involved analyzing the dynamic data of the production wells in this area and dividing the development stages of each well. Subsequently, the discriminant indicators, such as the initial oil production in the elastic stage, elastic time, cumulative oil production, and production decline rate were extracted. These indicators are generally available in each well and have less human interference. They form the basis of a dynamic quantitative characterization method for determiningreservoir types Through the utilization of mathematical statistics and artificial neural network technology, an automatic identification system for carbonate reservoir types based on dynamic data was established. Remarkably, the results obtained from this method align with over 80 % of the reservoir types determined through drilling logging and geophysical data. This automated identification method proves to be highly operable and complements geological data effectively, enabling more precise reservoir determination, especially in areas where geological information is scarce. Its applicability extends to carbonate reservoir research in regions with limited data, offering reliable reservoir-type results that are essential for informed development planning.

参考文献

[1] 李阳, 康志江, 薛兆杰, 等. 中国碳酸盐岩油气藏开发理论与实践[J]. 石油勘探与开发, 2018, 45(4): 669-678.
[1] LI Yang, KANG Zhijiang, XUE Zhaojie, et al. Theories and practices of carbonate reservoirs development in China[J]. Petroleum Exploration and Development, 2018, 45(4): 669-678.
[2] 康玉柱. 中国古生代碳酸盐岩古岩溶储集特征与油气分布[J]. 天然气工业, 2008, 28(6): 1-12.
[2] KANG Yuzhu. Characteristics and distribution laws of paleokarst hydrocarbon reservoirs in Paleozoic carbonate formations in China[J]. Natural Gas Industry, 2008, 28(6): 1-12.
[3] 庞雄奇, 林会喜, 郑定业, 等. 中国深层和超深层碳酸盐岩油气藏形成分布的基本特征与动力机制及发展方向[J]. 地质力学学报, 2020, 26(5): 673-695.
[3] PANG Xiongqi, LIN Huixi, ZHENG Dingye, et al. Basic characteristics, dynamic mechanism and development direction of the formation and distribution of deep and ultra-deep carbonate reservoirs in China[J]. Journal of Geomechanics, 2020, 26(5): 673-695.
[4] 毛敏, 袁胜斌, 张立刚, 等. 蚀变闪长岩潜山储层矿物组分特征与孔隙度的关系[J]. 非常规油气, 2022, 9(6): 14-19.
[4] MAO Min, YUAN Shengbin, ZHANG Ligang, et al. The relationship between mineral composition characteristics and porosity of altered diorite buried hill reservoir[J]. Unconventional Oil & Gas, 2022, 9(6): 14-19.
[5] 鲁新便, 杨敏, 汪彦, 等. 塔里木盆地北部“层控”与“断控”型油藏特征[J]. 石油实验地质, 2018, 40(4): 461-469.
[5] LU Xinbian, YANG Min, WANG Yan, et al. Geological characteristics of ‘strata-bound’ and ‘fault-controlled’ reservoirs in the northern Tarim Basin: taking the Ordovician reservoirs in the Tahe Oil Field as an example[J]. Petroleum Geology & Experiment, 2018, 40(4): 461-469.
[6] 卜旭强, 王来源, 朱莲花, 等. 塔里木盆地顺北油气田奥陶系断控缝洞型储层特征及成藏模式[J]. 岩性油气藏, 2023, 35(3): 152-160.
[6] BU Xuqiang, WANG Laiyuan, ZHU Lianhua, et al. Characteristics and reservoir-forming models of Ordovician fault-controlled fracture-vuggy reservoirs in Shunbei oil and gas field, Tarim Basin[J]. Lithologic Reservoirs, 2023, 35(3): 152-160.
[7] 李阳, 范智慧. 塔河奥陶系碳酸盐岩油藏缝洞系统发育模式与分布规律[J]. 石油学报, 2011, 32(1): 101-106.
[7] LI Yang, FAN Zhihui. Developmental pattern and distribution rule of the fracture-cavity system of Ordovician carbonate reservoirs in the Tahe Oilfield[J]. Acta Petrolei Sinica, 2011, 32(1): 101-106.
[8] 徐微, 蔡忠贤, 林忠民, 等. 塔河油田奥陶系碳酸盐岩油藏岩溶成因类型[J]. 海相油气地质, 2012, 17(1): 66-72.
[8] XU Wei, CAI Zhongxian, LIN Zhongmin, et al. Karst genesis classification of Ordovician carbonate reservoir in Tahe Oilfield, Tarim Basin[J]. Marine Origin Petroleum Geology, 2012, 17(1): 66-72.
[9] 鲁新便, 胡文革, 汪彦, 等. 塔河地区碳酸盐岩断溶体油藏特征与开发实践[J]. 石油与天然气地质, 2015, 36(3): 347-355.
[9] LU Xinbian, HU Wenge, WANG Yan, et al. Characteristics and development practice of fault-karst carbonate reservoirs in Tahe area, Tarim Basin[J]. Oil & Gas Geology, 2015, 36(3): 347-355.
[10] 韩长城, 林承焰, 鲁新便, 等. 塔河油田奥陶系碳酸盐岩岩溶斜坡断控岩溶储层特征及形成机制[J]. 石油与天然气地质, 2016, 37(5): 644-652.
[10] HAN Changcheng, LIN Chengyan, LU Xinbian, et al. Characterization and genesis of fault-controlled karst reservoirs in Ordovician carbonate karst slope of Tahe oilfield, Tarim Basin[J]. Oil & Gas Geology, 2016, 37(5): 644-652.
[11] 陈琳, 康志宏, 李鹏, 等. 塔河油田奥陶系岩溶型碳酸盐岩油藏储集空间发育特征及地质模式探讨[J]. 现代地质, 2013, 27(2): 356-365.
[11] CHEN Lin, KANG Zhihong, LI Peng, et al. Development characteristics and geological model of Ordovician karst carbonate reservoir space in Tahe Oilfield[J]. Geoscience, 2013, 27(2): 356-365.
[12] 金强, 田飞. 塔河油田岩溶型碳酸盐岩缝洞结构研究[J]. 中国石油大学学报(自然科学版), 2013, 37(5): 15-21.
[12] JIN Qiang, TIAN Fei. Investigation of fracture-cave constructions of karsted carbonate reservoirs of Ordovician in Tahe Oilfield, Tarim Basin[J]. Journal of China University of Petroleum (Edition of Natural Sciences), 2013, 37(5): 15-21.
[13] 段艳秋. 塔河油田托甫台区奥陶系碳酸盐岩储集体地质特征研究[J]. 石油地质与工程, 2011, 25(5): 13-17.
[13] DUAN Yanqiu. Study on geological features of Tuoputai area Ordovician carbonate rock reservoir body in Taha oilfield[J]. Petroleum Geology and Engineering, 2011, 25(5): 13-17.
[14] 宁超众, 孙龙德, 胡素云, 等. 塔里木盆地哈拉哈塘油田奥陶系缝洞型碳酸盐岩储层岩溶类型及特征[J]. 石油学报, 2021, 42(1): 15-32.
[14] NING Chaozhong, SUN Longde, HU Suyun, et al. Karst types and characteristics of the Ordovician fracture-cavity type carbonate reservoirs in Halahatang oilfield, Tarim Basin[J]. Acta Petrolei Sinica, 2021, 42(1): 15-32.
[15] 李功强, 赵永刚, 江子凤, 等. 塔河油田托普台区碳酸盐岩储层类型判别方法及应用[J]. 工程地球物理学报, 2013, 10(3): 338-343.
[15] LI Gongqiang, ZHAO Yonggang, JIANG Zifeng, et al. Identification method and application carbonate rock reservoirs in Tuoputai Oilfield District[J]. Chinese Journal of Engineering Geophysics, 2013, 10(3): 338-343.
[16] 宋传真, 马翠玉. 塔河油田奥陶系缝洞型油藏油水流动规律[J]. 岩性油气藏, 2022, 34(4): 150-158.
[16] SONG Chuanzhen, MA Cuiyu. Oil-water flow law of Ordovician fractured-vuggy reservoirs in Tahe Oilfield[J]. Lithologic Reservoirs, 2022, 34(4): 150-158.
[17] 苏俊磊, 张松扬, 王晓畅, 等. 塔河油田碳酸盐岩洞穴型储层充填性质常规测井表征[J]. 地球物理学进展, 2015, 30(3): 1264-1269.
[17] SU Junlei, ZHANG Songyang, WANG Xiaochang, et al. Conventional logging characterization on fillings characteristic of cavernous carbonate reservoirs in Tahe oilfield[J]. Progress in Geophysics, 2015, 30(3): 1264-1269.
[18] 杨敏, 龙喜彬, 潜欢欢, 等. 塔河缝洞型油藏试井曲线特征及储集体识别[J]. 油气井测试, 2020, 29(3): 64-70.
[18] YANG Min, LONG Xibin, QIAN Huanhuan, et al. Well test curves and identification of fractured vuggy reservoirs in Tahe Oilfield[J]. Well Testing, 2020, 29(3): 64-70.
[19] 梁健, 王栋, 张鑫, 等. 塔河油田碳酸盐岩缝洞型油藏远井储集体定量化表征及动用技术[J]. 地质学刊, 2021, 45(1): 29-36.
[19] LIANG Jian, WANG Dong, ZHANG Xin, et al. The Tahe oilfield carbonate fractured cave reservoir far-well quantitatively assessment and exploitation technology[J]. Journal of Geology, 2021, 45(1): 29-36.
[20] 邓光校, 胡文革, 王震. 碳酸盐岩缝洞储集体分尺度量化表征[J]. 新疆石油地质, 2021, 42(2): 232-237.
[20] DENG Guangxiao, HU Wenge, WANG Zhen. Quantitative characterization of fractured-vuggy carbonate reservoirs[J]. Xinjiang Petroleum Geology, 2021, 42(2): 232-237.
[21] 蔡明金, 王守峰, 尹国君, 等. 缝洞型碳酸盐岩储层储集类型判别方法[J]. 油气井测试, 2018, 27(4): 7-14.
[21] CAI Mingjin, WANG Shoufeng, YIN Guojun, et al. Reservoir type identification method for fractured-vuggy carbonate reservoirs[J]. Well Testing, 2018, 27(4): 7-14.
[22] 韩长城, 林承焰, 任丽华, 等. 基于地震波形指示的碳酸盐岩储集体反演方法——以塔河油田中-下奥陶统为例[J]. 石油与天然气地质, 2017, 38(4): 822-830.
[22] HAN Changcheng, LIN Chengyan, REN Lihua, et al. Waveform-indication-based seismic inversion of carbonate reservoirs: A case study of the Lower-Middle Ordovician in Tahe oilfield, Tarim Basin[J]. Oil & Gas Geology, 2017, 38(4): 822-830.
[23] 胡文革. 塔河碳酸盐岩缝洞型油藏开发技术及攻关方向[J]. 油气藏评价与开发, 2020, 10(2): 1-10.
[23] HU Wenge. Development technology and research direction of fractured-vuggy carbonate reservoirs in Tahe Oilfield[J]. Reservoir Evaluation and Development, 2020, 10(2): 1-10.
[24] 程晓军. 缝洞型油藏注烃气提高采收率参数优化数值模拟研究[J]. 油气藏评价与开发, 2022, 12(6): 902-909.
[24] CHENG Xiaojun. Enhanced oil recovery and parameter optimization of hydrocarbon injection in fractured-cavity reservoirs[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(6): 902-909.
[25] 毛毳, 钟建华, 李阳, 等. 沉积环境对塔河油田六区奥陶系碳酸盐岩储集空间的影响[J]. 海相油气地质, 2013, 18(4): 15-22.
[25] MAO Cui, ZHONG Jianhua, LI Yang, et al. Effect of sedimentary environment on Ordovician carbonate reservoir space in block-6 of Tahe Oil Field, Tarim Basin[J]. Marine Origin Petroleum Geology, 2013, 18(4): 15-22.
[26] 窦之林. 塔河油田碳酸盐岩缝洞型油藏开发技术[M]. 北京: 石油工业出版社, 2012.
[26] DOU Zhilin. Development technology of carbonate fractured cave reservoir in Tahe Oilfield[M]. Beijing: Petroleum Industry Press, 2012.
[27] 陈欢庆, 唐海洋, 吴桐, 等. 精细油藏描述中的大数据技术及其应用[J]. 油气地质与采收率, 2022, 29(1): 11-20.
[27] CHEN Huanqing, TANG Haiyang, WU Tong, et al. Big data technology and its application in fine reservoir description[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(1): 11-20.
文章导航

/