综合研究

考虑注水体积倍数及离子交换的水淹层剩余油评价方法

  • 李国艳 ,
  • 常琳 ,
  • 陈猛 ,
  • 钟萍 ,
  • 陈杰 ,
  • 王琳 ,
  • 李玉萍 ,
  • 张煜
展开
  • 1.中国石油青海油田分公司勘探开发研究院,甘肃 敦煌 736202
    2.西南石油大学地球科学与技术学院,四川 成都 610500
    3.中国石油青海油田分公司钻采工艺研究院,甘肃 敦煌 736202
李国艳(1982—),女,硕士,高级工程师,主要从事开发地质相关研究。地址:甘肃省酒泉市敦煌七里镇青海油田勘探开发研究院,邮政编码:736202。E-mail:55837178@qq.com

收稿日期: 2022-08-17

  网络出版日期: 2024-01-03

基金资助

国家自然科学基金“致密油储层孔隙尺度注水吞吐油水两相渗流机理研究”(41804141);油气藏地质及开发工程国家重点实验室开放基金“致密气藏孔隙尺度多因素耦合作用渗吸机理研究”(PLN201933)

Evaluation method of remaining oil in water-flooded formation considering injected-water volumes and ion exchange

  • Guoyan LI ,
  • Lin CHANG ,
  • Meng CHEN ,
  • Ping ZHONG ,
  • Jie CHEN ,
  • Lin WANG ,
  • Yuping LI ,
  • Yu ZHANG
Expand
  • 1. Research Institute of Exploration and Development, PetroChina Qinghai Oilfield Company, Dunhuang, Gansu 736202, China
    2. School of Geoscience and Technology, Southwest Petroleum University, Chengdu, Sichuan 610500, China
    3. Drilling and Production Technology Research Institute, PetroChina Qinghai Oilfield Company, Dunhuang, Gansu 736202, China

Received date: 2022-08-17

  Online published: 2024-01-03

摘要

准确求取注水开发过程中水淹层混合溶液矿化度和电阻率是评价油藏开发中后期储层水淹状况及剩余油饱和度的关键基础。通过了解岩心尺度不同矿化度水驱油岩电实验模拟矿场注水开发过程,理论分析建立考虑不同矿化度模拟地层水驱替过程注入水体积倍数及离子交换作用效率影响的混合地层水矿化度表征模型,准确表征了注水开发过程中储层混合流体性质变化,有效提升不同矿化度水驱过程中水淹层地层水电阻率计算精度。利用建立的方法在青海油田H区块实例井进行应用,计算水淹层含油饱和度与密闭取心分析含油饱和度符合率达到92.33 %,解释水淹层与实际生产动态匹配性较好,证实建立模型的有效性,为水淹层高精度评价定量提供支撑。

本文引用格式

李国艳 , 常琳 , 陈猛 , 钟萍 , 陈杰 , 王琳 , 李玉萍 , 张煜 . 考虑注水体积倍数及离子交换的水淹层剩余油评价方法[J]. 油气藏评价与开发, 2023 , 13(6) : 801 -808 . DOI: 10.13809/j.cnki.cn32-1825/te.2023.06.011

Abstract

Accurately calculating the salinity and resistivity of mixed solution in water-flooded layers is the key basis for evaluating the water-flooded condition and remaining oil saturation in middle-late development stage. This paper focuses on simulating water-flooding processes with varying salinities and measuring resistivity at the rock core scale. A novel model for calculating the resistivity of mixed solutions was developed, taking into account the efficiency of injected-water sweep and ion exchange. This model was formulated based on theoretical analysis and provides an accurate representation of the properties of reservoir mixed solutions during water-flooding. It significantly enhances the accuracy of mixed-water resistivity calculations. The established model was successfully used in H Block of Qinghai Oilfield and the calculated water saturation was consistent well with the core analysis result with the total coincidence rate reached 92.33 %. The interpreted water-flooded layers were matched well with the actual production performance, the effectiveness of the established model was validated and lays a foundation for quantitative evaluation in the water-flooded layers.

参考文献

[1] 张世明, 杨勇. 特高含水水驱油藏流场边界动态追踪模型研究[J]. 油气地质与采收率, 2021, 28(2): 91-99.
[1] ZHANG Shiming, YANG Yong. Study on the dynamic tracking model of flow field boundaries in water drive reservoirs at ultra-high water cut stage[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(2): 91-99.
[2] 徐锦绣, 赵书铮, 陈红兵, 等. SZ油田基于常规测井资料的水淹层定量评价[J]. 测井技术, 2018, 42(4): 401-406.
[2] XU Jinxiu, ZHAO Shuzheng, CHEN Hongbing, et al. Quantitative evaluation of water flooded zone based on conventional logging data in SZ oilfield[J]. Well Logging Technology, 2018, 42(4): 401-406.
[3] 郑利江, 孙雅琳, 车蓉, 等. PNN+饱和度测井复杂水淹层识别[J]. 测井技术, 2019, 43(4): 434-439.
[3] ZHENG Lijiang, SUN Yalin, CHE Rong, et al. Identification of complex water-flooded zones with PNN+ saturation logging[J]. Well Logging Technology, 2019, 43(4): 434-439.
[4] 吴建华, 刘行军, 张海涛, 等. 核磁共振谱形因子法识别水淹储层[J]. 测井技术, 2020, 44(1): 82-86.
[4] WU Jianhua, LIU Xingjun, ZHANG Haitao, et al. Interpretation of water-flooded reservoirs using the NMR spectral factor method[J]. Well Logging Technology, 2020, 44(1): 82-86.
[5] JIANG Z H, FU J H, LI G R, et al. Using resistivity data to study the waterflooding process: A case study in tight sandstone reservoirs of Ordos Basin, China[J]. Geophysics, 2020, 86(2): 55-65.
[6] 陈鑫, 陈科贵, 王兆峰, 等. Aryskum油田水淹层测井响应特征与水淹分析[J]. 地球物理学进展, 2022, 37(2): 1-9.
[6] CHEN Xin, CHEN Kegui, WANG Zhaofeng, et al. Logging response characteristics and flooding analysis of water-flooded layers in Aryskum oilfield[J]. Progress in Geophysics, 2022, 37(2): 1-9.
[7] 杨景强, 卢艳, 马宏宇, 等. 水淹层地层水电阻率变化规律研究[J]. 测井技术, 2006, 30(3): 195-197.
[7] YANG Jingqiang, LU Yan, MA Hongyu, et al. Study on resistivity variation of formation water in water-flooded zone[J]. Well Logging Technology, 2006, 30(3): 195-197.
[8] 谭锋奇, 许长福, 韦雅, 等. 基于数值模拟的水淹储层原始电阻率反演方法[J]. 中南大学学报(自然科学版), 2012, 43(8): 3149-3158.
[8] TAN Fengqi, XU Changfu, WEI Ya, et al. Original resistivity inversion method of flooded reservoir based on numerical simulation[J]. Journal of Central South University(Science and Technology), 2012, 43(8): 3149-3158.
[9] YAN W C, SUN J M, ZHANG J Y, et al. A novel method for estimation of remaining oil saturations in water-flooded layers[J]. Interpretation, 2017, 5(1): SB9-SB23.
[10] 冯程, 毛志强, 殷文, 等. 低渗透复杂润湿性储层电阻率实验及导电机理研究[J]. 地球物理学报, 2017, 60(3):1211-1220.
[10] FENG Cheng, MAO Zhiqiang, YIN Wen, et al. Study on resistivity experiments and conductive mechanism in low-permeability reservoirs with complex wettability[J]. Chinese Journal of Geophysics, 2017, 60(3): 1211-1220.
[11] 冷先刚, 张志国, 陈建文, 等. 水淹层电阻率变化规律研究[J]. 测井技术, 2017, 41(4): 428-432.
[11] LENG Xiangang, ZHANG Zhiguo, CHEN Jianwen, et al. Study on resistivity variation of water-flooded layer[J]. Well Logging Technology, 2017, 41(4): 428-432.
[12] 张恒荣, 谭伟, 何胜林, 等. 水驱油实验电阻率分析及混合液电阻率计算新方法[J]. 地球物理学进展, 2018, 33(2): 880-885.
[12] ZHANG Hengrong, TAN Wei, HE Shenglin, et al. Resistivity analysis of water drive oil and the new method of calculating the resistivity of mixed liquid[J]. Progress in Geophysics, 2018, 33(2): 880-885.
[13] 刘欢, 徐锦绣, 高文博, 等. 基于解释单元的水淹层原始电阻率反演及应用. 地球物理学进展, 2019, 34(1): 144-150.
[13] LIU Huan, XU Jinxiu, GAO Wenbo, et al. Original resistivity inversion of water-flooded zones based on interpretation unit and its application[J]. Progress in Geophysics, 2019, 34(1): 144-150.
[14] 曹仁义, 马明, 郭西锋, 等. 基于流管模型的低渗透油藏水驱平面波及系数计算方法[J]. 油气地质与采收率, 2021, 28(2): 100-108.
[14] CAO Renyi, MA Ming, GUO Xifeng, et al. Calculation method of plane sweep coefficient for water flooding in low permeability reservoir based on flow tube model[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(2): 100-108.
[15] 谭龙, 聂振荣, 熊志国, 等. 砾岩油藏化学驱微观孔隙剩余油分级动用机理——以克拉玛依油田砾岩油藏K7区块为例[J]. 油气地质与采收率, 2021, 28(4): 107-112.
[15] TAN Long, NIE Zhenrong, XIONG Zhiguo, et al. Study on graded production mechanism of remaining oil in micro-pores of chemical flooding in conglomerate reservoirs: A case of conglomerate reservoir in Block K7, Karamay Oilfield, Xinjiang[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(4): 107-112.
[16] 白松涛, 万金彬, 杨锐祥, 等. 地层水电阻率评价方法综述[J]. 地球物理学进展, 2017, 32(2): 566-578.
[16] BAI Songtao, WAN Jinbin, YANG Ruixiang, et al. Summary on formation water resistivity evaluation methods[J]. Progress in Geophysics, 2017, 32(2): 566-578.
[17] MABROUK W M, SOLIMAN K S, ANAS S S. New method to calculate the formation water resistivity (Rw)[J]. Journal of Petroleum Science and Engineering, 2013, 104: 49-52.
[18] 孙永涛. 利用测井资料定性识别水淹层的交会图方法[J]. 大庆石油地质与开发, 2014, 33(2): 161-164.
[18] SUN Yongtao. Crossplot method to qualitatively reconnize the watered-out reservoir by the well logging data[J]. Petroleum Geology and Oilfield Development in Daqing, 2014, 33(2): 161-164.
[19] SILVA P L, BASSIOUNI Z. A new approach to the determination of formation water resistivity from the SP log[C]// Paper SPWLA-1981-G presented at the SPWLA 22nd Annual Logging Symposium, Mexico City, Mexico, June 1981.
[20] 谢莹峰, 申辉林, 何胜林, 王利娟, 丁磊, 史安平. 电阻率反演技术在盐水水淹层评价中的应用[J]. 新疆石油地质, 2017, 38(3): 375-378.
[20] XIE Yingfeng, SHEN Huilin, HE Shenglin, et al. Application of resistivity inversion technique in brine flooded zone evaluation[J]. Petroleum geology of Xinjiang, 2017, 38(3): 375-378.
[21] 邹长春, 尉中良, 潘令枝. 计算混合液电阻率的一种有效方法[J]. 物探化探计算技术, 1999(3): 216-219.
[21] ZOU Changchun, WEI Zhongliang. An effective method to calculate resistivity of mixing solution[J]. Computing Techniques for Geophysical and Geochemical Exploration, 1999(3): 216-219.
[22] 袁伟, 张占松, 吕洪志, 等. 水淹层混合液地层水电阻率的计算方法[J]. 石油天然气学报, 2014, 36(9): 78-83.
[22] YUAN Wei, ZHANG Zhansong, LYU Hongzhi, et al. Calculation method of formation water resistivity of water-flooded zone mixture[J]. Journal of Petroleum and Natural Gas, 2014, 36(9): 78-83.
[23] 王丽, 谭伟, 何胜林, 等. 基于并联导电模型的水淹层剩余油饱和度评价方法[J]. 大庆石油地质与开发, 2016, 35(2): 134-139.
[23] WANG Li, TAN Wei, HE Shenglin, et al. Evaluating method of the remained oil saturation for the watered-out reservoir based on parallel conduction model[J]. Petroleum Geology and Oilfield Development in Daqing, 2016, 35(2): 134-139.
[24] 高兴军, 宋新民, 褚人杰, 等. 动静结合方法计算储层水淹后地层混合液电阻率技术及其在剩余油饱和度解释中的应用—以吉林扶余油田泉四段油层为例[J]. 地学前缘, 2008, 15(1): 160-168.
[24] GAO Xingjun, SONG Xinmin, CHU Renjie, et al. A new technique of the determination of mixed fluid resistivity in water flooded formation by combining dynamic and static information and its application to well logging interpretation of residual oil saturation: An example from Quan4formation of Fuyu oilfield[J]. Earth Science Frontiers, 2008, 15(1): 160-168.
[25] 申辉林, 方鹏. 水驱油地层电阻率变化规律数值模拟及拐点影响因素分析[J]. 中国石油大学学报(自然科学版), 2011, 35(3): 58-62.
[25] SHEN Huilin, FANG Peng. Numerical simulation of formation resistivity variation in water drive process and analysis of influence factors of inflection point[J]. Journal of China University of Petroleum, 2011, 35(3): 58-62.
[26] 张建升, 杨洪伟, 时新磊, 等. 一种反演水淹层混合水电阻率的新方法[J]. 西南石油大学学报(自然科学版), 2021, 43(1): 9.
[26] ZHANG Jiansheng, YANG Hongwei, SHI Xinlei, et al. A new method for inversing mixed water resistivity in water flooded zone[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(1): 133-141.
[27] 卢艳, 杨清山, 刘传平. 水驱油岩石物理响应特征实验研究[J]. 测井技术, 2018, 42(4): 371-376.
[27] LU Yan, YANG Qingshan, LIU Chuanping, Experimental study on petrophysical response characteristics of water flooding[J]. Well Logging Technology, 2018, 42(4): 371-376.
[28] 屈信忠, 唐文生, 姜明忠, 等. 高盐油藏开发期饱和度计算的矿化度驱替-交换模型[J]. 测井技术, 2018, 42(2): 186-192.
[28] QU Xinzhong, TANG Wensheng, JIANG Mingzhong, et al. Petrophysical model of salinity displacement-ion exchange for saturation calculation during the development of high salinity reservoirs[J]. Well Logging Technology, 2018, 42(2): 186-192.
[29] LIU Renqiang, DUAN Yonggang, TAN Fengqi, et al. Evaluation on an original resistivity inversion method of water flooding a conglomerate reservoir based on petrophysical analysis[J]. Journal of Geophysics and Engineering, 2015, 5: 780-792.
[30] 朱学娟, 单沙沙. 不同注水开发阶段水淹层混合地层水电阻率计算方法[J]. 地质与资源, 2017, 26(6): 620-624.
[30] ZHU Xuejuan, SHAN Shasha. Calculation of mixed formation water resistivity in water flooded layer at different waterflood stages[J]. Geology and Resources, 2017, 26(6): 620-624.
[31] 赵军, 袁淞珊, 李维, 等. 基于离子交换的水淹层地层水电阻率计算方法[J]. 地球物理学进展, 2019, 34(2): 676-680.
[31] ZHAO Jun, YUAN Songshan, LI Wei, et al. Computation method of formation water resistivity for water-out reservoir based on ion-exchange[J]. Progress in Geophysics, 2019, 34(2): 676-680.
[32] 秦敏, 申辉林, 丁磊, 等. 基于微元动态物质平衡法模型确定水淹层混合液电阻率[J]. 吉林大学学报(地球科学版), 2020, 50(3): 919-928.
[32] QIN Min, SHEN Huilin, DING Lei, et al. Determining mixed liquid resistivity of water flooded reservoir based on micro element dynamic material balance model[J]. Journal of Jilin University(Earth Science Edition), 2020, 50(3): 919-928.
[33] 么忠文, 张剑风, 何凯, 等. 低孔低渗泥质砂岩水淹层岩电参数及定量评价标准的研究[J]. 石油天然气学报, 2010, 32(6): 97-102.
[33] YAO Zhongwen, ZHANG Jianfeng, HE Kai, et al. Study on electrical parameters and quantitative evaluation standard of low porosity and low permeability argillaceous sandstone[J]. Journal of Petroleum and Natural Gas, 2010, 32(6): 97-102.
[34] 孙游雪, 高齐明, 魏玉梅, 等. 水淹层评价中Rw、mn值的确定[J]. 山东理工大学学报(自然科学版), 2018, 32(3): 57-60.
[34] SUN Youxue, GAO Qiming, WEI Yumei, et al. Determination of Rw, m and n values in water-flooded zone evaluation[J]. Journal of Shandong University of Technology(Science & Technology Edition), 2018, 32(3): 57-60.
文章导航

/