综合研究

考虑重力作用的垂向双洞窜流试井模型

  • 徐燕东 ,
  • 陶杉 ,
  • 何辉 ,
  • 万小勇 ,
  • 邹宁 ,
  • 袁鸿飞
展开
  • 1.中国石化西北油田分公司,新疆 乌鲁木齐 830011
    2.中国石化碳酸盐岩缝洞型油藏提高采收率重点实验室,新疆 乌鲁木齐 830011
    3.西安华线石油科技有限公司,陕西 西安 710065
徐燕东(1975—),男,硕士,高级工程师,从事试油测试方面的工作。地址:新疆维吾尔自治区乌鲁木齐市新市区长春路南路466号中国石化西北石油科研生产园区B402室,邮政编码:830011。E-mail:tonnyxu2001@126.com

收稿日期: 2022-12-29

  网络出版日期: 2024-01-03

基金资助

中国石化科技部项目“顺北一区5号断裂带提质提速钻完井技术研究”(P20002)

Well test model of vertical double-hole channeling considering gravity

  • Yandong XU ,
  • Shan TAO ,
  • Hui HE ,
  • Xiaoyong WAN ,
  • Ning ZOU ,
  • Hongfei YUAN
Expand
  • 1. Sinopec Northwest Company of China Petroleum and Chemical Corporation, Urumqi, Xinjiang 830011, China
    2. Key Laboratory of Enhanced Oil Recovery in Carbonate Fractured-vuggy Reservoirs, CNPC, Urumqi, Xinjiang 830011, China
    3. Xi’an Sinoline Petroleum Science & Technology Co., Ltd, Xi’an, shaanxi 710065, China

Received date: 2022-12-29

  Online published: 2024-01-03

摘要

顺北油田塔里木盆地顺托果勒低隆北部断溶体储层具有明显的垂向发育及非均质性特征。由于储层垂向深度大,流体渗流过程中重力影响不可忽略。考虑油藏储层由小尺度的裂缝、大尺度的溶洞以及大尺度的窜流通道构成,不同深度处的初始压力随深度的变化,结合渗流力学原理及等势体理论建立了考虑重力作用的大尺度缝洞试井模型。采用Laplace(拉普拉斯)变换方法进行了求解,绘制了模型典型图版及参数敏感性分析图版。结果表明:考虑重力作用时流体流动需要克服更大的阻力,无因次压力及其导数曲线中后期位置更高;考虑小尺度裂缝储层渗流作用时会出现窜流通道线性流、大溶洞过渡流、大溶洞拟稳态流分别与裂缝性储层径向流的叠加特征,前者无因次压力及其压力导数曲线斜率介于0 ~ 0.5,后两者无因次压力导数曲线缓慢下降后缓慢上升。通过实例分析验证了模型的有效性和适用性。研究成果丰富了缝洞试井模型,为垂向大深度缝洞型油藏试井资料解释提供了理论依据。

本文引用格式

徐燕东 , 陶杉 , 何辉 , 万小勇 , 邹宁 , 袁鸿飞 . 考虑重力作用的垂向双洞窜流试井模型[J]. 油气藏评价与开发, 2023 , 13(6) : 827 -833 . DOI: 10.13809/j.cnki.cn32-1825/te.2023.06.014

Abstract

The fault-affected karst system in the north of Shuntuoguole low uplift, Tarim basin, Shunbei oilfield has obvious vertical development and heterogeneity. Due to the large vertical depth of the reservoir, the influence of gravity can not be ignored in the process of fluid flow. Considering that the reservoir is composed of small-scale fracture, large-scale cavity and large-scale channeling path, and the initial pressure at different depths varies with the depth, a large-scale fracture-vuggy well test model considering gravity is established combined with the principle of seepage mechanics and the equipotential body theory. The Laplace transform method was used to address this issue and the typical model plate and parameter sensitivity analysis plate were drawn. The results show that the fluid flow needs to overcome more resistance when gravity is taken into account, and the positions of dimensionless pressure and its derivative curves are higher in the middle and later stages. When accounting for the seepage effect in small-scale fractured reservoirs, distinct flow characteristics emerge: Linear flow in channeling paths, Transitional flow in large cavities, Quasi-steady flow in large cavities, and Radial flow in fractured reservoirs. The slope of the dimensionless pressure and its derivative curve of the former is between 0 and 0.5. The dimensionless pressure derivative curves of the latter two decrease slowly and then rise slowly. The applicability and validity of the model are further corroborated through case studies. This research not only enriches the fracture-vuggy well test model literature but also provides a solid theoretical foundation for interpreting well test data in vertical fracture-vuggy reservoirs with significant depth.

参考文献

[1] 鲁新便, 胡文革, 汪彦, 等. 塔河地区碳酸盐岩断溶体油藏特征与开发实践[J]. 石油与天然气地质, 2015, 36(3): 347-355.
[1] LU Xinbian, HU Wenge, WANG Yan, et al. Characteristics and development practice of fault-karst carbonate reservoirs in Tahe area,Tarim Basin[J]. Oil & Gas Geology, 2015, 36(3): 347-355.
[2] 胡文革. 顺北油气田断溶体油藏油井产能评价新方法[J]. 新疆石油地质, 2021, 42(2): 168-172.
[2] HU Wenge. A new method for evaluating the productivity of oil wells in fault-karst reservoirs in Shunbei oil & gas field[J]. Xinjiang Petroleum Geology, 2021, 42(2): 168-172.
[3] 李阳, 侯加根, 李永强. 碳酸盐岩缝洞型储层特征及分类分级地质建模[J]. 石油勘探与开发, 2016, 43(4): 600-606.
[3] LI Yang, HOU Jiagen, LI Yongqiang. Features and hierarchical modeling of carbonate fracture-cavity reservoirs[J]. Petroleum Exploration and Development, 2016, 43(4): 600-606.
[4] 商晓飞, 段太忠, 张文彪, 等. 断控岩溶主控的缝洞型碳酸盐岩内部溶蚀相带表征——以塔河油田10 区奥陶系油藏为例[J]. 石油学报, 2020, 41(3): 329-341.
[4] SHANG Xiaofei, DUAN Taizhong, ZHANG Wenbiao, et al. Characterization of dissolution facies belt in fracture-cavity carbonate rocks mainly controlled by fault-controlling karst:A case study of Ordovician reservoirs in the Block 10 of Tahe oilfield[J]. Acta Petrolei Sinica, 2020, 41(3): 329-341.
[5] 唐磊, 王建峰, 曹敬华, 等. 塔里木盆地顺北地区超深断溶体油藏地质工程一体化模式探索[J]. 油气藏评价与开发, 2021, 11(3): 329-339.
[5] TANG Lei, WANG Jianfeng, CAO Jinghua, et al. Geology-engineering integration mode of ultra-deep fault-karst reservoir in Shunbei area, Tarim Basin[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(3): 329-339.
[6] 汪春浦, 叶海峰, 肖高棉. 多尺度缝洞型碳酸盐岩气藏试井分析[J]. 油气井测试, 2021, 30(6): 1-9.
[6] WANG Chunpu, YE Haifeng, XIAO Gaomian. Well test analysis of multi-scale fracture-vuggy carbonate gas reservoir[J]. Well Testing, 2021, 30(6): 1-9.
[7] 王子胜, 姚军, 戴卫华. 缝洞型油藏试井解释方法在塔河油田的应用[J]. 西安石油大学学报(自然科学版), 2007, 102(1): 72-74.
[7] WANG Zisheng, YAO Jun, DAI Weihua. Application of the well test interpretation method for fracture-vug reservoir in Tahe Oilfield[J]. Journal of Xi'an Shiyou University(Natural Science Edition), 2007, 102(1): 72-74.
[8] 王建峰, 彭小龙, 王高旺, 等. 缝洞型油藏流动模型的选择方法[J]. 油气地质与采收率, 2009, 16(5): 86-88.
[8] WANG Jianfeng, PENG Xiaolong, WANG Gaowang, et al. Method of selecting the flow model for the fracture-cavernous reservoir[J]. Petroleum Geology and Recovery Efficiency, 2009, 16(5): 86-88.
[9] WARREN J E, ROOT P J. The behavior of naturally fractured reservoirs[J]. Society of Petroleum Engineers Journal, 1963, 3(3): 245-255.
[10] CAMACHO V R, VáSQUEZ C M, CASTREJóN A R. Pressure-transient and decline-curve behavior in naturally fractured vuggy carbonate reservoirs[J]. SPE Reservoir Evaluation & Engineering, 2005, 8(2): 95-112.
[11] 彭小龙, 杜志敏, 戚志林, 等. 多重介质渗流模型的适用性分析[J]. 石油天然气学报, 2006, 28(4): 99-101.
[11] PENG Xiaolong, Du Zhimin, Qi Zhilin, et al. Analysis on the adaptability of multi-medium percolation model[J]. Journal of Oil and Gas Technology, 2006, 28(4): 99-101.
[12] 刘洪, 任路, 胡治华. 缝洞型油藏钻遇溶洞油井的压力曲线特征[J]. 岩性油气藏, 2012, 24(2): 124-128.
[12] LIU Hong, REN Lu, HU Zhihua. Pressure curve characteristics for wells drilled in cave of fracture-cavity carbonate reservoirs[J]. Lithologic Reservoirs, 2012, 24(2): 124-128.
[13] 尹洪军, 邢翠巧, 计秉玉, 等. 大尺度溶洞发育的缝洞型油藏试井解释模型研究[J]. 特种油气藏, 2018, 25(5): 84-88.
[13] YIN Hongjun, XING Cuiqiao, JI Bingyu, et al. Well test interpretation model for fracture-cavity reservoir with well-developed large-scale caves[J]. Special Oil & Gas Reservoirs, 2018, 25(5): 84-88.
[14] 彭小龙, 杜志敏, 刘学利, 等. 大尺度溶洞裂缝型油藏试井新模型[J]. 西南石油大学学报(自然科学版), 2008, 30(2): 74-77.
[14] PENG Xiaolong, DU Zhimin, LIU Xueli, et al. A new well test model for the big size cavity-fracture reservoirs[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2008, 30(2): 74-77.
[15] 常宝华, 刘华勋, 熊伟, 等. 大尺度多洞缝型油藏试井分析方法[J]. 油气田地面工程, 2011, 30(4): 14-16.
[15] CHANG Baohua, LIU Huaxun, XIONG Wei, et al. Well test analysis method of large-scale multiple fractured-vuggy reservoir[J]. Oil-Gas Field Surface Engineering, 2011, 30(4): 14-16.
[16] 段宝江, 常宝华, 安为国, 等. 双洞型碳酸盐岩油藏试井分析研究[J]. 科学技术与工程, 2012, 12(25): 6305-6309.
[16] DUAN Baojiang, CHANG Baohua, AN Weiguo, et al. Research on well test analysis of the dual cavity/fracture system in carbonate formations[J]. Science Technology & Engineering, 2012, 12(25): 6305-6309.
[17] 熊钰, 叶海峰, 蔡明金, 等. 井打在大尺度裂缝上的缝洞型油气藏试井模型[J]. 科学技术与工程, 2017, 17(34): 49-54.
[17] XIONG Yu, YE Haifeng, CAI Mingjin, et al. A well test model for wells drilled in large-scale fracture of fractured-vuggy carbonate reservoirs[J]. Science Technology and Engineering, 2017, 17(34): 49-54.
[18] 徐燕东. 考虑重力因素的断溶体储层“井-洞-缝”模型试井解释方法[J]. 计算物理, 2020, 37(2): 189-197.
[18] XU Yandong. An interpretation method with “Well-Cave-Crack” model of dissolves reservoir considering gravity factors[J]. Chinese Journal of Computational Physics, 2020, 37(2): 189-197.
[19] 马国锐, 宋海, 李新勇, 等. 一种考虑重力因素影响的单洞型断溶体储层试井解释方法: CN113294147A[P]. 2021-08-24.
[19] MA Guorui, SONG Hai, LI Xinyong, et al. An interpretation method with single cavity model of dissolved reservoir considering gravity factors: CN113294147A[P]. 2021-08-24.
[20] DU Xin, LU Zhiwei, LI Dongmei, et al. A novel analytical well test model for fractured vuggy carbonate reservoirs considering the coupling between oil flow and wave propagation[J]. Journal of Petroleum Science and Engineering, 2019, 173: 447-461.
文章导航

/