油气藏评价与开发 >
2024 , Vol. 14 >Issue 1: 1 - 9
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2024.01.001
“双碳”目标下的中国CCUS技术挑战及对策
收稿日期: 2023-12-26
网络出版日期: 2024-03-05
基金资助
江苏省碳达峰碳中和科技创新专项资金“苏北地区二十万吨级CCUS重大科技示范工程”(BE2022603)
China's CCUS technology challenges and countermeasures under “double carbon” target
Received date: 2023-12-26
Online published: 2024-03-05
CCUS(碳捕集、利用与封存)技术是实现全球碳减排的重要途径,也是保障中国能源安全和推动经济协同发展的重要手段。同时,有利于促进中国可持续发展和生态文明建设。中国CCUS技术各环节均取得了显著进展,但要大规模推广应用仍然存在多重制约。基于文献调研和工作积累,阐述了国内外CCUS技术现状,指出了CCUS技术当前所面临的技术挑战及攻关方向。已有的研究工作表明,解决捕集技术能耗和成本高,驱油封存技术有待进一步研究,化工利用技术转化能耗高、转化效率低,封存安全性监测和评估技术体系尚未建立等难题的对策措施有:①针对不同排放源的特性,选用不同的碳捕集方法多元化融合实现源头降本;②攻关多目标优化技术,协调优化驱油效率和CO2封存率;③持续研发新型催化剂,加速CO2的转化反应,提高转化效率;④充分借鉴美国、澳大利亚等国家的碳税政策,探索适合中国CCUS产业的财税激励政策,增加经济效益,提高企业积极性;⑤建立覆盖CCUS全链条各环节的系列标准规范,指导工程建设实施,从规范上降低企业风险。通过这些措施的实施,推动中国CCUS技术的快速发展,为实现碳中和目标做出更大的贡献。
叶晓东 , 陈军 , 陈曦 , 王海妹 , 王慧珺 . “双碳”目标下的中国CCUS技术挑战及对策[J]. 油气藏评价与开发, 2024 , 14(1) : 1 -9 . DOI: 10.13809/j.cnki.cn32-1825/te.2024.01.001
Carbon Capture, Utilization, and Storage(CCUS) technology is pivotal for global carbon emissions reduction and plays a crucial role in ensuring China's energy security and fostering the concurrent growth of its economy. It also supports China's path towards sustainable development and ecological advancement. While significant strides have been made in CCUS technology within China, challenges persist that hinder its widespread adoption. Based on literature research and work accumulation, the current status of CCUS technology both domestically and internationally is described, and the current technical challenges and research directions that CCUS technology are pointed out. The existing research efforts have provided countermeasures to address the challenges of high energy consumption and cost of capture technologies, the need for further research on oil recovery and storage technologies, the high energy consumption and low conversion efficiency of chemical utilization technologies, and the lack of a technical system for monitoring and evaluating the safety of storage. These countermeasures are as follows: ①Diversified integration of different carbon capture methods to achieve cost reduction at the source based on the characteristics of different emission sources; ②Tackling multi-objective optimization techniques, coordinating and optimizing oil recovery efficiency and CO2 storage rate; ③Continuously developing new catalysts to accelerate the conversion reaction of CO2 and improve conversion efficiency; ④Fully draw on the carbon tax policies of countries such as the United States and Australia, explore fiscal and tax incentive policies suitable for China's CCUS industry, increase economic benefits, and enhance enterprise enthusiasm; ⑤Establish a series of standard specifications covering all aspects of the CCUS entire chain, guide the implementation of engineering construction, and reduce enterprise risks from a standardized perspective. Through the implementation of these measures, the rapid development of CCUS technology in China will be promoted, and greater contribution will be made to achieving the goal of carbon neutrality.
[1] | 陈健, 古共伟, 郜豫川. 我国变压吸附技术的工业应用现状及展望[J]. 化工进展, 1998, 17(1): 14-17. |
[1] | CHEN Jian, GU Gongwei, GAO Yuchuan. Actuality and prospect of pressure swing adsorption application in industry[J]. Chemical Industry and Engineering Progress, 1998, 17(1): 14-17. |
[2] | 陈旭, 杜涛, 李刚. 吸附工艺在碳捕集中的应用现状[J]. 中国电机工程学报, 2019, 39(增刊1): 155-163. |
[2] | CHEN Xu, DU Tao, LI Gang, et al. Application of adsorption technology on carbon capture[J]. Proceedings of the CSEE, 2019, 39(suppl. 1): 155-163. |
[3] | 彭一宪. 精馏与低温提馏耦合—一种油田二氧化碳驱产出气回收新工艺[J]. 油气藏评价与开发, 2012, 2(3): 42-47. |
[3] | PENG Yixian. Coupling of distillation and low temperature stripping: A new output gas recovery technology in CO2 flooding process in oilfields[J]. Reservoir Evaluation and Development, 2012, 2(3): 42-47. |
[4] | 张帅, 郅晓, 石信超, 等. 有机胺类CO2捕集吸收剂研究进展[J/OL]. 应用化工(2023-11-28)[2023-12-07]. https://doi.org/10.16581/j.cnki.issn1671-3206.20231128.007. |
[4] | ZHANG Shuai, ZHI Xiao, SHI Xinchao, et al. Research progress of organic amines for CO2 capture and absorption[J/OL]. Applied Chemical Industry(2023-11-28)[2023-12-07]. https://doi.org/10.16581/j.cnki.issn1671-3206.20231128.007. |
[5] | 樊强, 许世森, 刘沅, 等. 基于IGCC的燃烧前CO2捕集技术应用与示范[J]. 中国电力, 50(5): 163-167. |
[5] | FAN Qiang, XU Shisen, LIU Yuan, et al. Application and demonstration of IGCC-based pre-Combustion CO2 Capture Technology[J]. Electric Power, 50(5): 163-167. |
[6] | 费维扬, 艾宁, 陈健. 温室气体CO2的捕集和分离—分离技术面临的挑战与机遇[J]. 化工进展, 2005, 24(1): 1-4. |
[6] | FEI Weiyang, AI Ning, CHEN Jian. Capture and separation of greenhouse gases CO2: The challenge and opportunity for separation technology[J]. Chemical Industry and Engineering Progress, 2005, 24(1): 1-4. |
[7] | 桂霞, 王陈魏, 云志, 等. 燃烧前 CO2捕集技术研究进展[J]. 化工进展, 2014, 33(7): 1895-1901. |
[7] | GUI Xia, WANG Chenwei, YUN Zhi, et al. Research progress of pre-combustion CO2 capture[J]. Chemical Industry and Engineering Progress, 2014, 33(7): 1895-1901. |
[8] | 吉立鹏, 张丙龙, 曾卫民. 基于石灰窑回收CO2用于炼钢的关键技术分析[J]. 中国冶金, 2019, 29(3): 49-52. |
[8] | JI Lipeng, ZHANG Binglong, ZENG Weimin. Analysis on key technologies of CO2 recovery from lime kiln for steelmaking[J]. China Metallurgy, 2019, 29(3): 49-52. |
[9] | 李蒙. 以低温甲醇与聚醇醚为溶剂的工业气净化工艺对比[J]. 能源化工, 2016, 37(5): 71-76. |
[9] | LI Meng. Comparison of rectisol and selexol processes in gas purification[J]. Energy Chemical Industry, 2016, 37(5): 71-76. |
[10] | 刘丽影, 宫赫, 王哲, 等. 捕集高湿烟气中CO2的变压吸附技术[J]. 化学进展, 2018, 30(6): 872-878. |
[10] | LIU Liying, GONG He, WANG Zhe, et al. Application of pressure swing adsorption technology to capture CO2 in highly humid flue gas[J]. Progress in Chemistry, 2018, 30(6): 872-878. |
[11] | 柳康, 许世森, 李广宇, 等. 基于整体煤气化联合循环的燃烧前 CO2捕集工艺及系统分析[J]. 化工进展, 2018, 37(12): 4897-4907. |
[11] | LIU Kang, XU Shisen, LI Guangyu, et al. Technological process and system analysis of pre-combustion CO2 capture based on IGCC[J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4897-4907. |
[12] | ROSS M B, DeLUNA P, LI Y F, et al. Designing materials for electrochemical carbon dioxide recycling[J]. Nature Catalysis, 2019, 2(8): 648-658. |
[13] | RONDA-LLORET M, ROTHENBERG G, SHIJU N R. A critical look at direct catalytic hydrogenation of carbon dioxide to olefins[J]. Chemsuschem, 2019, 12(17): 3896-3914. |
[14] | RIAZ A, ZAHEDI G, KLEME? J J. A review of cleaner production methods for the manufacture of methanol[J]. Journal of Cleaner Production, 2013, 57: 19-37. |
[15] | SHUKLA K, SRIVASTAVA V C. Synthesis of organic carbonates from alcoholysis of urea: A Review[J]. Catalysis Reviews, 2017, 59(1): 1-43. |
[16] | SUN W H, JIANG B, ZHANG Y, et al. Enabling the biosynthesis of malic acid in lactococcus lactis by establishing the reductive TCA pathway and promoter engineering[J]. Biochemical Engineering Journal, 2020, 31(161): 10645. |
[17] | 白振敏, 刘慧宏, 陈科宇, 等. 二氧化碳化学转化技术研究进展[J]. 山东化工, 2018, 47(11): 70-72. |
[17] | BAI Zhenmin, LIU Huihong, CHEN Keyu, et al. Recent progress on chemical conversion of carbon dioxide[J]. Shandong Chemical Industry, 2018, 47(11): 70-72. |
[18] | 赵锦波, 卞凤鸣. CO2化学转化基础与应用研究进展[J]. 化工进展, 2022, 41(增刊1): 524-535. |
[18] | ZHAO Jinbo, BIAN Fengmin. Progress on basis and application of CO2 chemical conversion technologies[J]. Chemical Industry and Engineering Progress, 2022, 41(suppl. 1): 524-535. |
[19] | 包炜军, 赵红涛, 李会泉, 等. 磷石膏加压碳酸化转化过程中平衡转化率分析[J]. 化工学报, 2017, 68(3): 1155-1162. |
[19] | BAO Weijun, ZHAO Hongtao, LI Huiquan, et al. Equilibrium conversion analysis of pressurized carbonation with phosphogypsum[J]. CIESC Journal, 2017, 68(3): 1155-1162. |
[20] | 陈倩倩, 顾宇, 唐志永, 等. 以二氧化碳规模化利用技术为核心的碳减排方案[J]. 中国科学院院刊, 2019, 34(4): 478-487. |
[20] | CHEN Qianqian, GU Yu, TANG Zhiyong, et al. Carbon dioxide sizable utilization technology based carbon reduction solutions[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(4): 478-487. |
[21] | 陈嵩嵩, 张国帅, 霍锋, 等. 煤基大宗化学品市场及产业发展趋势[J]. 化工进展, 2020, 39(12): 5009-5020. |
[21] | CHEN Songsong, ZHANG Guoshuai, HUO Feng, et al. Market and technology development trends of coal-based bulk chemicals[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 5009-5020. |
[22] | 陈为, 魏伟, 孙予罕. 二氧化碳光电催化转化利用研究进展[J]. 中国科学(化学), 2017, 47(11): 1251-1261. |
[22] | CHEN Wei, WEI Wei, SUN Yuhan. Recent progress in photoelectrocatalytic conversion of carbon dioxide[J]. Scientia Sinica Chimica, 2017, 47(11): 1251-1261. |
[23] | 贾晨喜, 邵敬爱, 白小薇, 等. 二氧化碳加氢制甲醇铜基催化剂性能的研究进展[J]. 化工进展, 2020, 39(9): 3658-3668. |
[23] | JIA Chenxi, SHAO Jing'ai, BAI Xiaowei, et al. Review on Cu-based catalysts for CO2 hydrogenation to methanol[J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3658-3668. |
[24] | 梁斌, 王超, 岳海荣, 等. 天然钾长石-磷石膏矿化CO2联产硫酸钾过程评价[J]. 四川大学学报(工程科学版), 2014, 46(3): 168-174. |
[24] | LIANG bin, WANG chao, YUE Hairong, et al. Evaluation for the process of mineralization of CO2 using natural K-feldspar and phosphogypsum to produce sulfate potassium[J]. Journal of Sichuan university(Engineering Science Edition), 2014, 46(3): 168-174. |
[25] | 倪泽南, 郭玉鑫, 张启俭. 二氧化碳加氢制甲醇和低碳烯烃研究进展[J]. 应用化工, 2023, 52(8): 2443-2447. |
[25] | NI Zenan, GUO Yuxin, ZHANG Qijian. Research progress in hydrogenation of carbon dioxide to methanol and light alkenes[J]. Applied Chemical Industry, 2023, 52(8): 2443-2447. |
[26] | 赵玉龙, 杨勃, 曹成, 等. 盐水层CO2封存潜力评价及适应性评价方法研究进展[J]. 油气藏评价与开发, 2023, 13(4): 484-494. |
[26] | ZHAO Yulong, YANG Bo, CAO cheng, et al. Research progress of evaluation of CO2 storage potential and suitability assessment indexes in saline aquifers[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 484-494. |
[27] | 郭平, 张万博, 陈馥, 等. 降低CO2-原油最小混相压力的助混剂研究进展[J]. 油气藏评价与开发, 2022, 12(5): 726-733. |
[27] | GUO Ping, ZHANG Wanbo, CHEN Fu, et al. Research progress of assistants for reducing CO2-crude oil minimum miscible pressure[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(5): 726-733. |
[28] | 桑树勋, 刘世奇, 陆诗建, 等. 工程化CCUS全流程技术及其进展[J]. 油气藏评价与开发, 2022, 12(5): 711-725. |
[28] | SANG Shuxun, LIU Shiqi, LU Shijian, et al. Engineered full flowsheet technology of CCUS and its research progress[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(5): 711-725. |
[29] | 李阳, 黄文欢, 何应付, 等. 双碳愿景下中国石化不同油藏类型CO2驱提高采收率技术发展与应用[J]. 油气藏评价与开发, 2021, 11(6): 793-804. |
[29] | LI Yang, HUANG Wenhuan, HE Yingfu, et al. Different reservoir types of CO2 flooding in Sinopec EOR technology development and application under “dual carbon” vision[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(6): 793-804. |
[30] | 计秉玉, 何应付. 中国石化低渗透油藏CO2驱油实践与认识[J]. 油气藏评价与开发, 2021, 11(6): 805-811. |
[30] | JI Bingyu, HE Yingfu. Practice and understanding about CO2 flooding in low permeability oil reservoirs by Sinopec[J]. Reservoir Evaluation and Development, 2021, 11(6): 805-811. |
[31] | 常世彦, 郑丁乾, 付萌. 2℃/1.5℃温控目标下生物质能结合碳捕集与封存技术(BECCS)[J]. 全球能源互联网, 2019, 2(3): 277-287. |
[31] | CHANG Shiyan, ZHENG Dingqian, FU Meng. Bioenergy with carbon capture and storage(BECCS) in the pursuit of the 2 ℃/1.5 ℃ target[J]. Journal of Global Energy Interconnection, 2019, 2(3): 277-287. |
[32] | 白宏山, 赵东亚, 田群宏, 等. CO2捕集、运输、驱油与封存全流程随机优化[J]. 化工进展, 2019, 38(11): 4911-4920. |
[32] | BAI Hongshan, ZHAO Dongya, TIAN Qunhong, et al. Stochastic optimization of the whole process of CO2 capture,transportation,utilization and sequestration[J]. Chemical Industry and Engineering Progress, 2019, 38(11): 4911-4920. |
[33] | 辛艳萍. 中国油气管道技术现状与发展趋势分析[J]. 天然气与石油, 2020, 38(2): 26-31. |
[33] | XIN Yanping. Current situation and development trend of oil and gas pipeline technology in China[J]. Natural Gas and Oil, 2020, 38(2): 26-31. |
[34] | 黄晶. 中国碳捕集利用与封存技术评估报告[M]. 北京: 科学出版社, 2021. |
[34] | HUANG Jing. Assessment report on carbon capture, utilization and storage technology in China[M]. Beijing: Science Press, 2021. |
[35] | 林海周, 罗志斌, 裴爱国, 等. 二氧化碳与氢合成甲醇技术和产业化进展[J]. 南方能源建设, 2020, 7(2): 14-19. |
[35] | LIN Haizhou, LUO Zhibin, PEI Aiguo, et al. Technology and industrialization progress on methanol synthesis from carbon dioxide and hydrogen[J]. Southern Energy Construction, 2020, 7(2): 14-19. |
[36] | 王利宁, 杨雷, 陈文颖, 等. 国家自主决定贡献的减排力度评价[J]. 气候变化研究进展, 2018, 14(6): 613-620. |
[36] | WANG Lining, YANG Lei, CHEN Wenyin, et al. Assessment of carbon reduction effect of the Nationally Determined Contributions[J]. Climate Change Research, 2018, 14(6): 613-620. |
/
〈 | 〉 |