油气藏评价与开发 >
2024 , Vol. 14 >Issue 1: 10 - 17
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2024.01.002
胜利油田百万吨级CCUS输注采关键工程技术
收稿日期: 2023-10-23
网络出版日期: 2024-03-05
基金资助
国家重点研发计划“区域二氧化碳捕集与封存关键技术研发与示范”(2022YFE0206800)
Key engineering technologies of one-million-ton CCUS transportation-injection-extraction in Shengli Oilfield
Received date: 2023-10-23
Online published: 2024-03-05
碳捕集、利用与封存(CCUS)是实现“双碳”目标的重要技术手段,涵盖捕集—输送—注入—采出—回注等关键环节。胜利油田经过多年探索和攻关,形成了输注采系列关键工程技术。针对压损温差带来的CO2相变与长距离泄漏风险,建立了基于相态控制的长距离CO2管道安全输送工艺技术,实现高效经济输送;研发了中国首台套管道输送泵;建成了中国最长的超临界压力CO2长输管道,补齐了国内CO2长距离输送的短板。为满足示范工程大排量CO2高压注入的需要,研发了国内首台套高压密相注入泵,实现了40 MPa高压密闭注入;针对注气压力高、气液比高、泵效低以及CO2腐蚀等问题,形成了免压井安全注气管柱、多功能采油管柱、CO2驱腐蚀防护等注采配套工程工艺技术,实现了高效安全注采和长效腐蚀防护。建成了中国首个集管输工程、注入装备、驱油封存、注采工艺、集输回注为一体的,多领域、多节点的百万吨级CCUS示范工程,目前各环节运行良好,实现“平稳、安全、高效、绿色”运行。对胜利油田百万吨级CCUS输注采工艺及配套装备进行了总结,以期为后续CCUS工程建设提供借鉴和指导。
舒华文 . 胜利油田百万吨级CCUS输注采关键工程技术[J]. 油气藏评价与开发, 2024 , 14(1) : 10 -17 . DOI: 10.13809/j.cnki.cn32-1825/te.2024.01.002
CCUS technology is a crucial technology for achieving the goal of “dual carbon”, involving process such as capture, transportation, injection, extraction and re-injection. Shengli Oilfield has developed essential engineering technologies for transportation and injection through years of exploration. To manage the phase changes of CO2 and the risks of long-distance leakage due to pressure loss and temperature variations, a safety transportation technology for long-distance CO2 pipelines was established. This technology is based on phase state control, ensuring efficient and cost-effective transportation. developed China’s first casing pipeline transport pump; and built China’s longest long-distance supercritical pressure CO2 pipeline, which makes up for the shortcomings of the long-distance CO2 transport in China. In order to meet the needs of high-pressure injection of large-displacement CO2 in the demonstration project, China’s first high-pressure dense-phase injection pump has been developed, realizing high-pressure dense-phase injection of 40 MPa. In view of the problems of high injection pressure, high gas-to-liquid ratio, low pumping efficiency, and corrosion of CO2, the engineering process technology of injection and extraction supporting such as safe injection of gas pipeline columns for pressure-free wells, multi-functional oil recovery pipeline columns, and corrosion prevention of CO2 repulsion has been formed to realize high-efficiency, safe injection and extraction and long-lasting corrosion protection. China's first multi-field, multi-node, one-million-ton CCUS demonstration project integrating pipeline transport engineering, injection equipment, flooding and sequestration, injection-extraction process, and gathering-transmission and re-injection, has been operating well and realizing “smooth, safe, efficient and green” operation in all aspects. This summary of the one-million-ton CCUS transportation-injection-extraction process and supporting equipment in Shengli Oilfield is intended to provide reference and guidance for the construction of subsequent CCUS project.
[1] | 施雅风. 全球和中国变暖特征及未来趋势[J]. 自然灾害学报, 1996, 5(2): 5-14. |
[1] | SHI Yafeng. Features and tendency of global warming and its implications for China[J]. Journal of Natural Disasters, 1996, 5(2): 5-14. |
[2] | 王嘉豪, 黄季夏, 杨林生, 等. 环北极地区自然灾害多尺度时空格局分析[J]. 灾害学, 2023, 38(2): 226-234. |
[2] | WANG Jiahao, HUANG Jixia, YANG Linsheng, et al. Multi-scale temporal and spatial pattern analysis of natural disasters in the circum-Arctic region[J]. Journal of Catastrophology, 2023, 38(2): 226-234. |
[3] | AALST M K V. The impacts of climate change on the risk of natural disasters[J]. Disasters, 2010, 30(1): 5-18. |
[4] | 杨美娟. 欧盟温室气体减排政策的发展及其成效[D]. 青岛: 中国海洋大学, 2012. |
[4] | YANG Meijuan. The development and effection of European Union's policy on reducing greenhouse gas emission[D]. Qingdao: Ocean University of China, 2012. |
[5] | HAUGEN H A, ELDRUP N, BERNSTONE C, et al. Options for transporting CO2 from coal fired power plants case Denmark[J]. Energy Procedia, 2009, 1(1): 1665-1672. |
[6] | HASAN M M F, ZANTYE M S, KAZI M K. Challenges and opportunities in carbon capture,utilization and storage: A process systems engineering perspective[J]. Computers & Chemical Engineering, 2022, 166: 107925. |
[7] | MCCOY S T, RUBIN E S. An engineering-economic model of pipeline transport of CO2, with application to carbon capture and storage[J]. International Journal of Greenhouse Gas Control, 2008, 2(2): 219-229. |
[8] | 顾永正, 王天堃, 黄艳, 等. 燃煤电厂二氧化碳捕集利用与封存技术及工程应用[J]. 洁净煤技术, 2023, 29(4): 98-108. |
[8] | GU Yongzheng, WANG Tiankun, HUANG Yan, et al. Carbon dioxide capture, utilization and storage technology and engineering application for coal-fired power plants[J]. Clean Coal Technology, 2023, 29(4): 98-108. |
[9] | 费维扬, 艾宁, 陈健. 温室气体CO2的捕集和分离——分离技术面临的挑战与机遇[J]. 化工进展, 2005, 24(1): 1-4. |
[9] | FEI Weiyang, AI Ning, CHEN Jian. Capture and separation of greenhouse gases CO2: The challenge and opportunity for separation technology[J]. Chemical Industry and Engineering Progress, 2005, 24(1): 1-4. |
[10] | 韩学义. 电力行业二氧化碳捕集、利用与封存现状与展望[J]. 中国资源综合利用, 2020, 38(2): 110-117. |
[10] | HAN Xueyi. Current situation and prospect of carbon dioxide capture, utilization and storage in electric power industry[J]. China Resources Comprehensive Utilization, 2020, 38(2):110-117. |
[11] | 王喜平, 唐荣. 燃煤电厂碳捕集、利用与封存商业模式与政策激励研究[J]. 热力发电, 2022, 51(8): 29-41. |
[11] | WANG Xiping, TANG Rong. Research on business model and policy incentives for carbon capture, utilization and storage in coalfired power plants[J]. Thermal Power Generation, 2022, 51(8): 29-41. |
[12] | 李娜娜, 赵晏强, 秦阿宁, 等. 国际碳捕集、利用与封存科技战略与科技发展态势分析[J]. 热力发电, 2022, 51(10): 19-27. |
[12] | LI Nana, ZHAO Yanqiang, QIN Aning, et al. Analysis of international carbon capture, utilization and storage strategy and scientific development trend[J]. Thermal Power Generation, 2022, 51(10): 19-27. |
[13] | 桑树勋, 刘世奇, 陆诗建, 等. 工程化CCUS全流程技术及其进展[J]. 油气藏评价与开发, 2022, 12(5): 711-725. |
[13] | SANG Shuxun, LIU Shiqi, LU Shijian, et al. Engineered full flowsheet technology of CCUS and its research progress[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(5): 711-725. |
[14] | 张绍辉, 王凯, 王玲, 等. CO2驱注采工艺的应用与发展[J]. 石油钻采工艺, 2016, 38(6): 869-875. |
[14] | ZHANG Shaohui, WANG Kai, WANG Ling, et al. Development and application of CO2 flooding[J]. Oil Drilling & Production Technology, 2016, 38(6): 869-875. |
[15] | 刘建新, 田启忠, 张瑞霞, 等. 耐CO2腐蚀油井管材的选用[J]. 腐蚀科学与防护技术, 2012, 24(1): 77-78. |
[15] | LIU Jianxin, TIAN Qizhong, ZHANG Ruixia, et al. Selection of CO2 resistant oil well tubing[J]. Corrosion Science and Protection Technology, 2012, 24(1): 77-78. |
[16] | 关宏业. CO2驱配套采油工艺设计及问题的解决思路[J]. 内蒙古石油化工, 2013, 23(22): 48-50. |
[16] | GUAN Hongye. Design of CO2 flooding supporting oil recovery process and problem-solving ideas[J]. Inner Mongolia Petrochemical Industry, 2013, 23(22): 48-50. |
[17] | 熊涛. 榆树林油田CO2驱采油配套工艺[J]. 油气田地面工程, 2013, 23(5): 49. |
[17] | XIONG Tao. CO2 flooding oil recovery supporting technology in Yushulin Oilfield[J]. Oil-Gas Field Surface Engineering, 2013, 23(5): 49. |
[18] | 俞凯, 刘伟, 陈祖华, 等. 陆相低渗油藏 CO2混相驱技术[M]. 北京: 中国石化出版社, 2015. |
[18] | YU Kai, LIU Wei, CHEN Zuhua, et al. CO2 miscible flooding technology for low-permeability terrestrial reservoirs[M]. Beijing: China Petrochemical Press, 2015. |
[19] | 张燕芬, 刘鹤鸣. 国内外油气井抗CO2腐蚀缓蚀剂的研究进展[J]. 石油和化工设备, 2007, 10(4): 53-57. |
[19] | ZHANG Yanfen, LIU Heming. The research and developing situation of carbon dioxide corrosion inhibitor used for oil and gas field[J]. Petro & Chemical Equipment, 2007, 10(4): 53-57. |
[20] | 王林海, 沈靖, 孙爱平. 南海西部某气田防CO2腐蚀缓蚀剂研发[J]. 全面腐蚀控制, 2010, 24(11): 21-25. |
[20] | WANG Linhai, SHEN Jing, SUN Aiping. Anti-CO2 corrosion inhibitor development of a western South China Sea gas field[J]. Total Corrosion Control, 2010, 24(11): 21-25. |
[21] | 舒作静, 刘志德, 谷坛. 气液两相缓蚀剂在油气田开发中的应用[J]. 石油与天然气化工, 2001, 30(4): 200-201. |
[21] | SHU Zuojing, LIU Zhide, GU Tan. Application of gas-liquid two-phase corrosion inhibitors in oil and gas field development[J]. Chemical Engineering of Oil & Gas, 2001, 30(4): 200-201. |
[22] | CLAUSEN S, OOSTERKAMP A, STR?M K L. Depressurization of a 50 km long 24 inches CO2 pipeline[J]. Energy Procedia, 2012, 23: 256-265. |
[23] | WIEBE R, GADDY V L. Vapor phase composition of carbon dioxide-water mixtures at various temperatures and at pressures to 700 atmospheres[J]. Journal of the American Chemical Society, 1941, 63(2): 475-477. |
[24] | VESOVIC V, WAKEHAM W A, OLCHOWY G A, et al. The transport properties of carbon dioxide[J]. Journal of Physical and Chemical Reference Data, 1990, 19(3): 763-808. |
[25] | 吕家兴, 侯磊, 吴守志, 等. 含气体杂质超临界CO2管道输送特性研究[J]. 低碳化学与化工, 2020, 45(5): 77-82. |
[25] | LU Jiaxing, HOU Lei, WU Shouzhi, et al. Research on impact of gas impurities on pipeline transportation characteristics of supercritical CO2[J]. Low-Carbon Chemistry and Chemical Engineering, 2020, 45(5): 77-82. |
[26] | BUIT L, AHMAD M, MALLON W, et al. CO2 EuroPipe study of the occurrence of free water in dense phase CO2, transport[J]. Energy Procedia, 2011, 4(22): 3056-3062. |
[27] | AURSAND P, HAMMER M, MUNKEJORD S T, et al. Pipeline transport of CO2 mixtures: Models for transient simulation[J]. International Journal of Greenhouse Gas Control, 2013, 15(3): 174-185. |
[28] | MAHGEREFTEH H, BROWN S, MARTYNOV S. A study of the effects of friction, heat transfer, and stream impurities on the decompression behavior in CO2 pipelines[J]. Greenhouse Gases: Science and Technology, 2012, 2(5): 369-379. |
[29] | 孔韦海, 艾志斌, 胡盼, 等. L320原油输送管道静置段的腐蚀机理[J]. 腐蚀与防护, 2019, 40(7): 502-506. |
[29] | KONG Weihai, AI Zhibin, HU Pan, et al. Corrosion mechanism of the stationary section of L320 crude oil pipeline[J]. Corrosion and Protection, 2019, 40(7): 502-506. |
[30] | SIM S, COLE I S, CHOI Y S, et al. A review of the protection strategies against internal corrosion for the safe transport of supercritical CO2, via steel pipelines for CCS purposes[J]. International Journal of Greenhouse Gas Control, 2014, 29(29): 185-199. |
[31] | KING G G, KUMAR S. Designing CO2 transmission pipelines without crack arrestors[C]// Symposium on 2010 8th International Pipeline Conference, September 27-October 1, 2010, International Petroleum Technology Institute and the Pipeline Division, Calgary, Alberta. New York: ASME, 2010: 923-934. |
[32] | GALE J, DAVISON J. Transmission of CO2-safety and economic considerations[J]. Energy, 2004, 29(9): 1319-1328. |
[33] | ZHAO Q, LI Y X, LI S L. Safety control on the chocking process of supercritical carbon dioxide pipeline[J]. Advances in Mechanical Engineering, 2014: 1-10. |
[34] | 刘敏. 超临界二氧化碳管道输送瞬变特性研究[D]. 青岛: 中国石油大学(华东), 2015. |
[34] | LIU Min. The transient characteristics of supercritical carbon dioxide pipelines[D]. Qingdao: China University of Petroleum(East China), 2015. |
[35] | 吴其荣, 陶建国, 范宝成, 等. 燃煤电厂开展大规模碳捕集的技术路线选择及经济敏感性分析[J]. 热力发电, 2022, 51(10): 28-34. |
[35] | WU Qirong, TAO Jianguo, FAN Baocheng, et al. Technical route selection and economic sensitivity analysis of large-scale carbon capture in coal-fired power plant[J]. Thermal Power Generation, 2022, 51(10): 28-34. |
/
〈 | 〉 |