综合研究

BZ19-6低渗透储层反凝析污染及解除方法实验研究

  • 汤勇 ,
  • 唐凯 ,
  • 夏光 ,
  • 徐笛
展开
  • 1.西南石油大学油气藏地质及开发工程国家重点实验室,四川 成都 610500
    2.中国石油塔里木油田分公司英买采油气管理区,新疆 库尔勒 841000
    3.中海油能源发展股份有限公司钻采工程研究院,天津 100027
    4.中国石油新疆油田分公司玛湖勘探开发项目部,新疆 克拉玛依 834000
汤勇(1975—),男,博士,教授,现从事油气相态理论及测试、气田及凝析气田开发、注气提高采收率方面的教学及科研工作。地址:四川省成都市新都大道8号,邮政编码:610500。E-mail:tangyong2004@126.com

收稿日期: 2023-03-13

  网络出版日期: 2024-03-05

基金资助

国家自然科学基金面上项目“超低渗透油藏CO2强化采油过程中多孔介质相态及微观渗流机理研究”(51974268)

Retrograde condensation pollution and removal method of BZ19-6 low permeability reservoir

  • Yong TANG ,
  • Kai TANG ,
  • Guang XIA ,
  • Di XU
Expand
  • 1. State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China
    2. Yingmai Oil and Gas Production Management Area, PetroChina Tarim Oilfield Company, Korla, Xinjiang 841000, China
    3. Drilling and Production Engineering Research Institute of CNOOC Energy Development Co. Ltd., Tianjin 100027, China
    4. Exploration and Development Project Department of Mahu Area, PetroChina Xinjiang Oilfield Company, Karamay, Xinjiang 834000, China

Received date: 2023-03-13

  Online published: 2024-03-05

摘要

BZ19-6凝析气田储量大、地露压差小、储层高温高压且低孔低渗,生产作业过程中极易产生反凝析污染。评价反凝析污染程度,采用合适的污染解除措施,对改善BZ19-6凝析气田反凝析污染具有重要意义。利用复配凝析气开展长岩心衰竭实验,模拟反凝析油污染,测试不同衰竭压力点对应的气相渗透率并评价反凝析污染程度;同时开展了注活性剂(TC281)、注甲醇、注甲醇+活性剂3组解除反凝析污染实验,及注甲醇+活性剂1组解除反凝析+水锁综合液相污染实验。实验结果表明:注活性剂(TC281)、注甲醇、注甲醇+活性剂3种方案对解除反凝析污染均有一定效果,注甲醇+活性剂1组解除反凝析污染效果最好,渗透率恢复率达84%;注甲醇解除反凝析污染渗透率恢复率为81%;注活性剂1组解除反凝析渗透率恢复率为54%;注甲醇+活性剂1组解除反凝析+水锁综合液相污染,渗透率恢复率达到80%。实验为BZ19-6凝析气田解除反凝析污染提供了方案指导。

本文引用格式

汤勇 , 唐凯 , 夏光 , 徐笛 . BZ19-6低渗透储层反凝析污染及解除方法实验研究[J]. 油气藏评价与开发, 2024 , 14(1) : 102 -107 . DOI: 10.13809/j.cnki.cn32-1825/te.2024.01.014

Abstract

The BZ19-6 condensate gas field, characterized by large reserves, small surface pressure differential, high temperature and pressure reservoir conditions, and low porosity and permeability, is highly susceptible to retrograde condensation contamination during production operations. Evaluating the degree of retrograde condensation contamination and adopting appropriate contamination remediation measures are crucial for improving the situation in the BZ19-6 condensate gas field. The long core failure experiment was carried out using the mixed condensate gas to simulate the reverse condensate pollution, test the gas permeability corresponding to different exhaustion pressure points and evaluate the degree of reverse condensate pollution. Additionally, experiments on remediation of retrograde condensation contamination were carried out using three different approaches: injection of surfactant(TC281), injection of methanol, and injection of a combination of methanol and surfactant. Furthermore, an experiment was conducted using a combination of methanol and surfactant to address both retrograde condensation and water blockage, a comprehensive liquid phase contamination. The experimental results indicate that all three schemes of injecting active agent(TC281), injecting methanol and injecting methanol + active agent have certain effects on removing retrograde condensation pollution. The group of injecting methanol + active agent 1 has the best effect on removing retrograde condensation and removing retrograde condensation pollution, and the permeability recovery rate is 84%. The permeability recovery rate of methanol injection to remove retrograde condensation pollution is 81%. The recovery rate of retrograde condensate permeability in the surfactant injection group 1 was 54%. The injection of methanol + active agent 1 relieved the comprehensive liquid phase pollution of reverse condensation + water lock, and the permeability recovery rate reached 80%. These experiments provide guidance for remediation strategies to address retrograde condensation contamination in the BZ19-6 condensate gas field.

参考文献

[1] 杜建芬, 肖翠, 汪周华, 等. BK气藏反凝析污染评价及解除方法实验[J]. 天然气工业, 2015, 35(4): 52-56.
[1] DU Jianfen, XIAO Cui, WANG Zhouhua, et al. Laboratory study on the evaluation and removal of retrograde condensate damage in the Baka Gas Reservoir, Tuha Basin[J]. Natural Gas Industry, 2015, 35(4): 52-56.
[2] 冯强汉, 邓宝康, 杨映洲, 等. 致密砂岩凝析气藏反凝析伤害评价及解除方法[J]. 大庆石油地质与开发, 2020, 39(2): 139-146.
[2] FENG Qianghan, DENG Baokang, YANG Yingzhou, et al. Evaluations and removing methods of the retrograde condensate damage for the gas condensate reservoirs in the tight sandstone[J]. Petroleum Geology and Oilfield Development in Daqing, 2020, 39(2): 139-146.
[3] 刘建仪, 郭平, 李士伦, 等. 反凝析污染对凝析气井伤害的实验评价研究[J]. 天然气工业, 2001, 21(5): 67-70.
[3] LIU Jianyi, GUO Ping, LI Shilun, et al. Condensate gas well damage caused by retrograde condensation contamination[J]. Natural Gas Industry, 2001, 21(5): 67-70.
[4] 高奕奕, 孙笛, 汤勇, 等. 低渗凝析气井反凝析、反渗吸伤害及解除方法[J]. 西南石油学院学报, 2005, 27(2): 45-49.
[4] GAO Yiyi, SUN Di, TANG Yong, et al. Low permeability condensate gas well, retrograde condensation, reverse imbibition damage and removing methods[J]. Journal of Southwest Petroleum Institute, 2005, 27(2): 45-49.
[5] 汤勇, 杜志敏, 孙雷, 等. 解除低渗凝析气井近井污染研究现状及进展[J]. 天然气工业, 2007, 27(6): 88-91.
[5] TANG Yong, DU Zhimin, SUN Lei, et al. Research status and progress of decontamination near well pollution of low permeability condensate gas wells[J]. Natural Gas Industry, 2007, 27(6): 88-91.
[6] 潘毅, 孙雷, 李士伦, 等. 凝析气藏解除反凝析污染、提高气井产能方法[J]. 西南石油大学学报(自然科学版), 2007, 29(2): 37-40.
[6] PAN Yi, SUN Lei, LI Shilun, et al. The method solving condensate block and improving productivity of gas condensate reservoir[J]. Journal of Southwest Petroleum University (Science and Technology Edition), 2007, 29(2): 37-40.
[7] 李小刚, 谢信捷, 杨兆中, 等. 特低渗凝析气藏复合解堵技术应用[J]. 油气藏评价与开发, 2017, 7(3): 44-49.
[7] LI Xiaogang, XIE Xinjie, YANG Zhaozhong, et al. Composite plug removal technology for ultra-low permeability condensate gas reservoir[J]. Reservoir Evaluation and Development, 2017, 7(3): 44-49.
[8] 张冲, 宋宪实, 汤勇. 龙凤山特低孔特低渗凝析气藏反凝析伤害实验研究[J]. 西安石油大学学报(自然科学版), 2020, 35(2): 50-53.
[8] ZHANG Chong, SONG Xianshi, TANG Yong. Experimental study on retrograde condensate damage of Longfengshan extra-low porosity and extra-low permeability condensate gas reservoir[J]. Journal of Xi'an Shiyou University(Natural Science Edition), 2020, 35(2): 50-53.
[9] JAMLUDIN A K M, YE S, THOMAS J, et al. Experimental and theoretical assessment of using propane to remediate liquid buildup in condensate reservoirs[C]// Paper SPE-71526-MS presented at the SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, September 2001.
[10] HAMOUD A, JACOB G, GARY A, et al. A successful methanol treatment in a gas-condensate reservoir: field application[C]// Paper SPE-80901-MS presented at the SPE Production and Operation Symposium, March 23-25, 2003.
[11] Du L G, JACOB G, GARY A, et al. Use of solvents to improve the productivity of gas condensate wells[C]// Paper SPE-62935-MS presented at the SPE Annual Technical Conference and Exhibition, Dallas, Texas, October 2000.
[12] 乐平, 曾凡成, 杨智帆, 等. SJ低渗气藏反凝析污染评价实验研究[J]. 新疆石油天然气, 2020, 16(2): 78-82.
[12] YUE Ping, ZENG Fancheng, YANG Zhifan, et al. Experimental study on retrograde condensate pollution evaluation of SJ low permeability gas reservoir[J]. Xinjiang Oil and Gas, 2020, 16(2): 78-82.
[13] 石德佩, 李相方, 刘华, 等. 注甲醇解除凝析气井反凝析污染的机理[J]. 新疆石油地质, 2007, 28(2): 207-209.
[13] SHI Depei, LI Xiangfang, LIU Hua, et al. Mechanism of eliminating retrograde condensate damage in gas condensate well by methanol injection process[J]. Xinjiang Petroleum Geology, 2007, 28(2): 207-209.
[14] 李虎, 李相方, 赵林. 注甲醇吞吐解除反凝析堵塞和水锁的正负面作用分析[J]. 钻采工艺, 2010, 33(1): 90-92.
[14] LI Hu, LI Xiangfang, ZHAO Lin. Mechanism analysis of advantage and disadvantage of removing condensate and water blocking by methanol treatment[J]. Drilling and Production Technology, 2010, 33(1): 90-92.
[15] 肖丽仙, 杜建芬, 郭平, 等. 凝析气藏反凝析污染研究[J]. 断块油气田, 2009, 16(4): 102-104.
[15] XIAO Lixian, DU Jianfen, GUO Ping, et al. Pollution caused by retrograde condensate in condensate gas reservoir[J]. Fault-Block Oil and Gas Field, 2009, 16(4): 102-104.
[16] 严谨, 张烈辉, 王益维. 凝析气井反凝析污染的评价及消除[J]. 天然气工业, 2005, 25(2): 133-135.
[16] YAN Jin, ZHANG Liehui, WANG Yiwei. Evaluation and elimination of condensate gas well damage caused by retrograde condensate contamination[J]. Natural Gas Industry, 2005, 25(2): 133-135.
[17] 周小平, 孙雷, 陈朝刚. 低渗透凝析气藏反凝析水锁伤害解除方法现状[J]. 钻采工艺, 2005, (5): 66-68.
[17] ZHOU Xiaoping, SUN Lei, CHEN Chaogang. Development and methods of removing retrograde condensate and water blocking impairment in the low permeability condensate gas reservoir[J]. Drilling and Production Technology, 2005, (5): 66-68.
[18] 徐兵威, 王世彬, 刘城成. 致密低渗底水气藏控水二次加砂压裂技术研究与应用[J]. 油气藏评价与开发, 2022, 12(4): 698-702.
[18] XU Bingwei, WANG Shibin, LIU Chengcheng. Research and application of water-control secondary sanding fracturing technology in tight low permeability bottom water gas reservoir[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(4): 698-702.
[19] 谭先红, 梁斌, 王帅, 等. 一种低渗储层凝析气藏气井产能评价方法研究[J]. 油气藏评价与开发, 2021, 11(5): 724-729.
[19] TAN Xianhong, LIANG Bin, WANG Shuai, et al. A productivity evaluation method of gas wells in condensate gas reservoirs with low permeability[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(5): 724-729.
[20] 刘成川, 王勇飞, 毕有益. 中江气田窄河道致密砂岩气藏高效开发技术[J]. 油气藏评价与开发, 2022, 12(2): 345-355.
[20] LIU Chengchuan, WANG Yongfei, BI Youyi. Efficient development technique of tight sandstone gas reservoir in narrow channel of Zhongjiang Gas Field[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(2): 345-355.
[21] 王德英, 刘晓健, 邓辉, 等. 渤海湾盆地渤中19-6区中-新生代构造转换特征及其对太古宇潜山大规模储层形成的控制作用[J]. 石油与天然气地质, 2022, 43(6): 1334-1346.
[21] WANG Deying, LIU Xiaojian, DENG Hui, et al. Characteristics of the Meso-Cenozoic tectonic transformation and its control on the formation of largescale reservoirs in the Archean buried hills in Bozhong 19-6 area, Bohai Bay Basin[J]. Oil & Gas Geology, 2022, 43(6): 1334-1346.
[22] 李文浩, 卢双舫, 王民, 等. 基于扫描电镜大视域拼接技术定量表征致密储层微观非均质性[J]. 石油与天然气地质, 2022, 43(6): 1497-1504.
[22] LI Wenhao, LU Shuangfang, WANG Min, et al. Quantitative characterization of micro heterogeneity of tight reservoirs by large-view FE-SEM splicing technology[J]. Oil & Gas Geology, 2022, 43(6): 1497-1504.
[23] 袁静, 周涛, 乔俊, 等. 深层砂砾岩中的深部热流体作用及其地质意义——以渤海湾盆地东营凹陷民丰—盐家地区古近系沙河街组四段为例[J]. 石油与天然气地质, 2022, 43(4): 929-942.
[23] YUAN Jing, ZHOU Tao, QIAO Jun, et al. Deep hydrothermalism of deep coarse-grained siliciclastic rocks and its geological significance: A case study of the 4th member of the Paleogene Shahejie Formation in Minfeng-Yanjia area, Dongying Sag, Bohai Bay Basin[J]. Oil & Gas Geology, 2022, 43(4): 929-942.
文章导航

/