油气藏评价与开发 >
2024 , Vol. 14 >Issue 1: 83 - 90
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2024.01.012
吉木萨尔页岩油井区CO2前置压裂工艺参数优化及现场实践
收稿日期: 2023-01-09
网络出版日期: 2024-03-05
基金资助
中国石油重大科技专项“陆相页岩油规模增储上产与勘探开发技术研究”(2023ZZ15)
Parameter optimization and field practice of CO2 pre-fracturing process in Jimsar shale oil block
Received date: 2023-01-09
Online published: 2024-03-05
吉木萨尔凹陷芦草沟组页岩油具有原始渗透率极低,原油黏度高等特点,自然条件下无经济产能。通过现场实践,证明密切割+高强度体积压裂,是实现页岩油规模开发的最有效手段之一,但现阶段如何延缓油井递减率,提高单井采收率仍是亟待解决的问题。2019—2022年,在吉木萨尔页岩油区块,开展了CO2前置压裂辅助提产技术研究和现场试验,系统地研究分析CO2前置蓄能压裂和CO2吞吐在吉木萨尔页岩油区块的应用效果。结果表明,超临界态CO2具有混相增能、溶蚀改善储层条件、提高渗吸置换效率、提高缝网复杂程度等作用,并明确最优注入量、注入速度、注入方式等关键工艺参数,初步形成了一套页岩油藏CO2前置压裂的工艺技术体系。根据生产数据预测,CO2前置压裂工艺可将最终采收率提升20%左右,对实现页岩油效益开发,为其他类型页岩油藏提高开发效果提供参考。
赵坤 , 李泽阳 , 刘娟丽 , 胡可 , 江冉冉 , 王伟祥 , 刘秀珍 . 吉木萨尔页岩油井区CO2前置压裂工艺参数优化及现场实践[J]. 油气藏评价与开发, 2024 , 14(1) : 83 -90 . DOI: 10.13809/j.cnki.cn32-1825/te.2024.01.012
The shale oil of Lucaogou Formation in Jimsar Sag has the characteristics of extremely low original permeability and high viscosity of crude oil, making it uneconomical to produce under natural conditions. Field practices have demonstrated that dense drilling combined with high-intensity volume fracturing is one of the most effective means to achieve large-scale development of shale oil. However, how to slow down the decline rate of oil wells and improve the recovery rate per well remains a pressing issue to be addressed. From 2019 to 2022, the researches and field tests of CO2 pre-fracturing assisted production technology were carried out in Jimsar shale oil block. The application effect of CO2 pre-storage fracturing and CO2 huff and puff in Jimsar shale oil block was systematically studied and analyzed. The results indicate that supercritical CO2 has the effects of miscible energy increase, dissolution to improve reservoir conditions, improve imbibition replacement efficiency, and increase the complexity of fracture network. The optimal injection volume, injection speed, and injection methods were determined, and a preliminary technological system for CO2 pre-fracturing in shale oil reservoirs was established. According to the prediction of production data, the CO2 pre-fracturing process can increase the final recovery rate by about 20%, which provides a reference for realizing the benefit development of shale oil and improving the development effect of other types of shale reservoirs.
[1] | 徐长贵, 邓勇, 范彩伟, 等. 北部湾盆地涠西南凹陷页岩油地质特征与资源潜力[J]. 中国海上油气, 2022, 34(5): 1-12. |
[1] | XU Changgui, DENG Yong, FAN Caiwei, et al. Geological characteristics and resource potential of shale oil in Weixinan sag of Beibu Gulf Basin[J]. China Offshore Oil and Gas, 2022, 34(5): 1-12. |
[2] | 陈浩, 张超, 徐程浩, 等. 基于支持向量机的致密油藏水平井体积压裂初期产能预测[J]. 中国海上油气, 2022, 34(1): 102-109. |
[2] | CHEN Hao, ZHANG Chao, XU Chenghao, et al. Support vector machine-based initial productivity prediction for SRV of horizontal wells in tight oil reservoirs[J]. China Offshore Oil and Gas, 2022, 34(1): 102-109. |
[3] | 苏畅, 赵刚, 鹿克峰, 等. 压裂井产量递减典型曲线图版的建立及应用[J]. 中国海上油气, 2022, 34(3): 82-90. |
[3] | SU Chang, ZHAO Gang, LU Kefeng, et al. Establishment of production decline typical curve plates for fractured well and their applications[J]. China Offshore Oil and Gas, 2022, 34(3): 82-90. |
[4] | VERDON J P, KENDALL J M, MAXWELL S C. A comparison of passive seismic monitoring of fracture stimulation from water and CO2injection[J]. Geophysics, 2010, 75(3): MA1-MA7. |
[5] | ISHIDA T, AOYAGI K, NIWA T, et al. Acoustic emission monitoring of hydraulic fracturing laboratory experiment with supercritical and liquid CO2[J]. Geophysical Research Letters, 2012, 39(16): 16309. |
[6] | MIDDLETON R S, CAREY J W, CURRIER R P, et al. Shale gas and non-aqueous fracturing fluids: Opportunities and challenges for supercritical CO2[J]. Applied Energy, 2015, 147(3): 500-509. |
[7] | 王猛, 王海柱, 李根生, 等. 超临界CO2压裂缝内携砂数值模拟[J]. 石油机械, 2018, 46(11): 72-78. |
[7] | WANG Meng, WANG Haizhu, LI Gensheng, et al. Numerical study of proppant transport with supercritical CO2 in fracture[J]. Petroleum Machinery, 2018, 46(11): 72-78. |
[8] | ZHANG X W, LU Y Y, TANG J R, et al. Experimental study on fracture initiation and propagation in shale using supercritical carbon dioxide fracturing[J]. Fuel, 2017, 190: 370-378. |
[9] | 霍进, 何吉祥, 高阳, 等. 吉木萨尔凹陷芦草沟组页岩油开发难点及对策[J]. 新疆石油地质, 2019, 40(4): 379-388. |
[9] | HUO Jin, HE Jixiang, GAO Yang, et al. The development difficulties and countermeasures of shale oil in Lucaogou Formation of Jimsar Sag[J]. Xinjiang Petroleum Geology, 2019, 40(4): 379-388. |
[10] | 吴宝成, 李建民, 邬元月, 等. 准噶尔盆地吉木萨尔凹陷芦草沟组页岩油上甜点地质工程一体化开发实践[J]. 中国石油勘探, 2019, 24(5): 679-690. |
[10] | WU Baocheng, LI Jianmin, WU Yuanyue, et al. Characteristics and main controls of shale oil reservoirs in Lucaogou Formation, Jimsar Sag, Junggar Basin[J]. China Petroleum Exploration, 2019, 24(5): 679-690. |
[11] | 陈晨, 朱颖, 翟梁皓, 等. 超临界二氧化碳压裂技术研究进展[J]. 探矿工程(岩土钻掘工程), 2018, 45(10): 21-26. |
[11] | CHEN Chen, ZHU Ying, ZHAI Lianghao, et al. Research progress of supercritical carbon dioxide fracturing technology[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling), 2018, 45(10): 21-26. |
[12] | 易勇刚, 黄科翔, 李杰, 等. 前置蓄能压裂中的CO2在玛湖凹陷砾岩油藏中的作用[J]. 新疆石油地质, 2022, 43(1): 42-47. |
[12] | YI Yonggang, HUANG Kexiang, LI Jie, et al. Effect of CO2 pre-pad in volume fracturing of conglomerate reservoirs in Mahu Sag, Junggar Basin[J]. Xinjiang Petroleum Geology, 2022, 43(1): 42-47. |
[13] | 苏玉亮, 王程伟, 李蕾, 等. 致密油藏CO2前置压裂流体相互作用机理[J]. 科学技术与工程, 2021, 21(8): 3076-3081. |
[13] | SU Yuliang, WANG Chengwei, LI Lei, et al. Behavior of CO2 pre-fracturing fluid in tight reservoir[J]. Science Technology and Engineering, 2021, 21(8): 3076-3081. |
[14] | 邹雨时, 李彦超, 李四海. CO2前置注入对页岩压裂裂缝形态和岩石物性的影响[J]. 天然气工业, 2021, 41(10): 83-94. |
[14] | ZOU Yushi, LI Yanchao, LI Sihai. Influence of CO2 pre-injection on fracture mophology and the petrophysical properties in shale fracturing[J]. Natural Gas Industry, 2021, 41(10): 83-94. |
[15] | 袁钟涛, 杨胜来, 张政, 等. 特低渗油藏注CO2吞吐适应性评价及规律模拟[J]. 非常规油气, 2022, 9(5): 85-92. |
[15] | YUAN Zhongtao, YANG Shenglai, ZHANG Zheng, et al. Adaptability evaluation and regular simulation of CO2 injection huff and puff in ultra-low permeability reservoirs[J]. Unconventional Oil & Gas, 2022, 9(5): 85-92. |
[16] | 钱坤, 杨胜来, 窦洪恩, 等. 注CO2过程中流体性质变化及驱油机理实验研究[J]. 石油科学通报, 2019, 4(1): 69-82. |
[16] | QIAN Kun, YANG Shenglai, DOU Hong’en, et al. Interaction of the CO2-oil system and displacement mechanisms during CO2 flooding[J]. Petroleum Science Bulletin, 2019, 4(1): 69-82. |
[17] | 李菊花, 王洁, 梁成钢, 等. 新疆吉木萨尔页岩油藏注CO2驱最小混相压力的确定[J]. 长江大学学报(自然科学版), 2022, 19(5): 37-44. |
[17] | LI Juhua, WANG Jie, LIANG Chenggang, et al. Determination of minimum miscible pressure of CO2 flooding in Jimsar shale reservoir of Xinjiang[J]. Journal of Yangtze University(Natural Science Edition), 2022, 19(5): 37-44. |
[18] | 王海柱, 李根生, 郑永, 等. 超临界CO2压裂技术现状与展望[J]. 石油学报, 2020, 41(1): 116-126. |
[18] | WANG Haizhu, LI Gensheng, ZHENG Yong, et al. Research status and prospects of supercritical CO2 fracturing technology[J]. Acta Petrolei Sinca, 2020, 41(1): 116-126. |
[19] | 马涛, 汤达祯, 蒋平, 等. 注CO2提高采收率技术现状[J]. 油田化学, 2007, 24(4): 379-383. |
[19] | MA Tao, TANG Dazhen, JIANG Ping, et al. The status of enhanced oil recovery by CO2 injection[J]. Oilfield Chemistry, 2007, 24(4): 379-383. |
[20] | 刘小波. CO2混相驱技术在特低渗透滩坝砂油藏的开发实践及效果评价[J]. 油气地质与采收率, 2020, 27(3): 113-119. |
[20] | LIU Xiaobo. Application and evaluation of CO2 miscible flooding in extra-low permeability beach-bar sand reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(3): 113-119. |
[21] | 张海龙. CO2混相驱提高石油采收率实践与认识[J]. 大庆石油地质与开发, 2020, 39(2): 114-119. |
[21] | ZHANG Hailong. Practice and understanding of enhanced oil recovery by CO2 miscible flooding[J]. Petroleum Geology & Oilfield Development in Daqing, 2020, 39(2): 114-119. |
[22] | 孟照峰. 超临界二氧化碳钻井井壁岩石特性研究[J]. 石油机械, 2022, 50(7): 49-54. |
[22] | MENG Zhaofeng. Study on rock characteristics of borehole wall during supercritical crbon dioxide drilling[J]. Petroleum Machinery, 2022, 50(7): 49-54. |
[23] | 卢义玉, 廖引, 汤积仁, 等. 页岩超临界CO2压裂起裂压力与裂缝形态试验研究[J]. 煤炭学报, 2018, 43(1): 175-180. |
[23] | LU Yiyu, LIAO Yin, TANG Jiren, et al. Experimental study on fracture initiation pressure and morphology in shale using supercritical CO2 fracturing[J]. Coal Journal, 2018, 43(1): 175-180. |
[24] | 苗芷芃, 吴涛, 张荣军, 等. 致密油体积压裂复杂缝网形成规律数值模拟研究[J]. 石油机械, 2022, 50(12): 96-102. |
[24] | MIAO Zhipeng, WU Tao, ZHANG Rongjun, et al. Numerical simulation on formation law of complex fracture network by volume fracturing in tight oil reservoir[J]. China Petroleum Machinery, 2022, 50(12): 96-102. |
[25] | 杨延增, 聂俊, 叶文勇, 等. 二氧化碳压裂供液系统设计[J]. 钻采工艺, 2020, 43(4): 75-77. |
[25] | YANG Yanzeng, NIE Jun, YE Wenyong, et al. Design of liquid supplying system in carbon dioxide fracturing[J]. Drilling & Production Technology, 2020, 43(4): 75-77. |
[26] | 王鹏涛, 吴向阳, 朱杰, 等. 二氧化碳前置蓄能体积压裂优化设计[J]. 当代化工, 2021, 50(2): 447-450. |
[26] | WANG Pengtao, WU Xiangyang, ZHU Jie, et al. Optimization design of volume fracturing with carbon dioxide pre-storage[J]. Contemporary Chemical Industry, 2021, 50(2): 447-450. |
[27] | 王高峰, 廖广志, 李宏斌, 等. CO2驱气机理与提高采收率评价模型[J]. 油气藏评价与开发, 2022, 12(5): 734-740. |
[27] | WANG Gaofeng, LIAO Guangzhi, LI Hongbin, et al. Mechanism and calculation model of EOR by CO2 flooding[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(5): 734-740. |
/
〈 | 〉 |