油气藏评价与开发 >
2024 , Vol. 14 >Issue 2: 267 - 276
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2024.02.012
气体水合物合成研究进展
收稿日期: 2023-04-28
网络出版日期: 2024-05-07
基金资助
国家自然科学基金面上项目“煤层气排采时储层气水状态及其对渗透率的控制作用”(41872170);国家自然科学基金重点项目“深部煤层气储渗系统优化改造机理及产出效应”(42130802);贵州省科技计划项目“贵州省煤层气(煤矿瓦斯)抽采提产增效关键技术及工程试验”([2022]ZD001);贵州省科技计划项目“贵州省煤层气地质工程一体化研究科技创新人才团队”(CXTD[2022]016)
Research progress of gas hydrate synthesis
Received date: 2023-04-28
Online published: 2024-05-07
水合物法捕集与封存CO2气体可服务于大规模减排的技术需求,加速“碳中和”目标的实现,对应对气候变化具有重要意义。从气体水合物的基本性质、生成机理及模型,多孔介质中水合物合成,水合物合成的分子动力学模拟等方面,综述了前人针对水合物合成领域的研究现状,提出了气体水合物合成过程中存在的科学问题,并对气体水合物的发展及煤系地层CO2水合物的封存方向进行了评价。研究认为,CO2气体的溶解度是限制准确计算多孔介质中水合物储气量的关键因素;气体水合物的局部结构化(成核)机制复杂,仍需深入研究;高纬度及永久冻土区煤系地层可作为水合物法封存CO2气体的地下空间。
吴财芳 , 高彬 , 李清 , 陈贞龙 . 气体水合物合成研究进展[J]. 油气藏评价与开发, 2024 , 14(2) : 267 -276 . DOI: 10.13809/j.cnki.cn32-1825/te.2024.02.012
The utilization of hydrate-based capture and storage of CO2 presents a promising avenue for substantial emissions reduction, contributing significantly to achieving carbon neutrality goals and addressing climate change. This paper delves into the foundational aspects of gas hydrates, including their properties, formation mechanisms, and models, as well as hydrate synthesis within porous media and the use of molecular dynamics simulations for understanding hydrate formation. Key challenges identified in the synthesis process of gas hydrates include the limited solubility of CO2 in porous media, which poses a significant hurdle in precisely determining the storage capacity of CO2 hydrates. Additionally, the local structural mechanisms, particularly nucleation processes involved in gas hydrate formation, are highlighted as complex areas that warrant further investigation. The paper also evaluates the potential of coal-bearing strata, especially in high-latitude and permafrost regions, as viable underground repositories for CO2 storage via hydrate formation. This approach not only offers a method for reducing atmospheric CO2 levels but also leverages the unique geological characteristics of these regions to enhance the efficiency and stability of CO2 storage. In summary, while hydrate-based CO2 capture and storage technologies hold considerable promise for climate change mitigation, addressing the scientific and technical challenges identified in this review is crucial for advancing the field and optimizing the efficacy of this storage method.
[1] | AKTAR M A, ALAM M M, AL-AMIN A Q. Global economic crisis, energy use, CO2 emissions, and policy roadmap amid COVID-19[J]. Sustain Prod Consum, 2021, 26: 770-781. |
[2] | TRACKER C A. A government roadmap for addressing the climate and post COVID-19 economic crises[R/OL]. (2020-04-27)[2023-03-02]. https://climateactiontracker.org/publications/addressing-the-climate-and-post-covid-19-economic-crises. |
[3] | 李鹭光, 孙秀娟, 王祖纲. 世界石油工业在变局中加快绿色低碳转型: 专访世界石油理事会副主席李鹭光先生[J]. 世界石油工业, 2022, 29(4): 1-6. |
[3] | LI Luguang, SUN Xiujuan, WANG Zugang. Quick low-carbon transition of petroleum industry in world change: Interview with LI Luguang, vice president of the World Petroleum Council[J]. World Petroleum Industry, 2022, 29(4): 1-6. |
[4] | 苏义脑. 中国碳达峰碳中和与能源发展战略的认识与思考[J]. 世界石油工业, 2022, 29(4): 7-11. |
[4] | SU Yinao. Understandings and thinkings of China's carbon peaking, carbon neutrality and energy development strategies[J]. World Petroleum Industry, 2022, 29(4): 7-11. |
[5] | 苏娟, 李沂, 卢颖, 等. 大变局下的能源安全与低碳转型: 第五届中国石油国际合作论坛综述[J]. 世界石油工业, 2022, 29(6): 13-18. |
[5] | SU Juan, LI Yi, LU Ying, et al. Energy security and low-carbon transition in the changing world: Overview of the 5th CNPC International Cooperation Forum[J]. World Petroleum Industry, 2022, 29(6): 13-18. |
[6] | 梁玲, 王璐, 孙静, 等. 全球碳排放增长分析与启示[J]. 世界石油工业, 2022, 29(6): 48-53. |
[6] | LIANG Ling, WANG Lu, SUN Jing, et al. Analysis and enlightenment of global carbon emission growth[J]. World Petroleum Industry, 2022, 29(6): 48-53. |
[7] | 周银邦, 王锐, 赵淑霞, 等. CO2封存过程中“适应性”地质建模方法及案例[J]. 非常规油气, 2022, 9(6): 1-8. |
[7] | ZHOU Yinbang, WANG Rui, ZHAO Shuxia, et al. “Fit to purpose” geological modeling methods and cases in the process of CO2 storage[J]. Unconventional Oil & Gas, 2022, 9(6): 1-8. |
[8] | 张明龙, 王磊, 崔强, 等. 二氧化碳驱油储层物性变化实验研究[J]. 世界石油工业, 2023, 30(3): 90-96. |
[8] | ZHANG Minglong, WANG Lei, CUI Qiang, et al. Experimental study on reservoir physical property change of carbon dioxide flooding[J]. World Petroleum Industry, 2023, 30(3): 90-96. |
[9] | 邹才能, 薛华庆, 熊波, 等. “碳中和”的内涵、创新与愿景[J]. 天然气工业, 2021, 41(8): 46-57. |
[9] | ZOU Caineng, XUE Huaqing, XIONG Bo, et al. Connotation,innovation and vision of “carbon neutral”[J]. Natural Gas Industry, 2021, 41(8): 46-57. |
[10] | HAO S Q, KIM S, QIN Y, et al. Enhanced CO2 gas storage in coal[J]. Industrial & Engineering Chemistry Research, 2013, 52(51): 18492-18497. |
[11] | SONG Y C, WANG S J, CHENG Z C, et al. Dependence of the hydrate-based CO2 storage process on the hydrate reservoir environment in high-efficiency storage methods[J]. Chemical Engineering Journal, 2021, (415): 128937. |
[12] | SONG Y C, ZHOU H, MA S H, et al. CO2 sequestration in depleted methane hydrate deposits with excess water[J]. International Journal of Energy Research, 2018, 42(7): 2536-2547. |
[13] | ZHANG X M, LI J P, WU Q B, et al. Experimental study on the effect of pore size on carbon dioxide hydrate formation and storage in porous media[J]. Journal of Natural Gas Science and Engineering, 2015, 25: 297-302. |
[14] | ZHONG D L, SUN D J, LU Y Y, et al. Adsorption-hydrate hybrid process for methane separation from a CH4/N2/O2 gas mixture using pulverized coal particles[J]. Industrial & Engineering Chemistry Research, 2014, 53(40): 15738-15746. |
[15] | WEN Z A, YAO Y B, LUO W J, et al. Memory effect of CO2-hydrate formation in porous media[J]. Fuel, 2021, 299: 120922. |
[16] | BARMAVATH T, MEKALA P, SANGWAI J S. Prediction of phase stability conditions of gas hydrates of methane and carbon dioxide in porous media[J]. Journal of natural gas science and engineering, 2014, 18: 254-262. |
[17] | CHARI V D, SHARMA D V S G, PRASAD P S R, et al. Methane hydrates formation and dissociation in nano silica suspension[J]. Journal of Natural Gas Science and Engineering, 2013, 11: 7-11. |
[18] | BUCH V, DEVLIN J P, MONREAL I A, et al. Clathrate hydrates with hydrogen-bonding guests[J]. Physical Chemistry Chemical Physics, 2009, 11(44): 10245. |
[19] | SUN D, ENGLEZOS P. Storage of CO2 in a partially water saturated porous medium at gas hydrate formation conditions[J]. International journal of greenhouse gas control, 2014, 25: 1-8. |
[20] | 魏国栋. 石英砂中水合物法储存二氧化碳的静态实验研究[D]. 兰州: 兰州理工大学, 2011. |
[20] | WEI Guodong. Static experiment study on the hydrate storage of CO2 in quartzite[D]. Lanzhou: Lanzhou University of Technology, 2011. |
[21] | KHOKHAR A A, GUDMUNDSSON J S, SLOAN E D. Gas storage in structure H hydrates[J]. Fluid Phase Equilibria, 1998, 150-151: 383-392. |
[22] | RIPMEESTER J A. Hydrate research-from correlations to a knowledge-based discipline: The importance of structure[J]. Annals of the New York Academy of Sciences, 2000, 912(1): 1-16. |
[23] | RATCLIFFE C I, RIPMEESTER J A. 1H and 13C NMR studies on carbon dioxide hydrate[J]. Journal of physical chemistry, 1986, 90(7): 1259-1263. |
[24] | FLEYFEL F, DEVLIN J P. Carbon dioxide clathrate hydrate epitaxial growth: spectroscopic evidence for formation of the simple type-Ⅱ CO2 hydrate[J]. Journal of physical chemistry, 1991, 95(9): 3811-3815. |
[25] | ZHANG X M, YANG H J, HUANG T T, et al. Research progress of molecular dynamics simulation on the formation-decomposition mechanism and stability of CO2 hydrate in porous media: A review[J]. Renewable and Sustainable Energy Reviews, 2022, 167: 112820. |
[26] | BOLLENGIER O, CHOUKROUN M, GRASSET O, et al. Phase equilibria in the H2O-CO2 system between 250-330 K and 0-1.7 GPa: Stability of the CO2 hydrates and H2O-ice Ⅵ at CO2 saturation[J]. Geochimica et Cosmochimica Acta, 2013, 119: 322-339. |
[27] | YANG X F, DU S, HAO Y C, et al. Molecular dynamics simulation of promoting nucleation of CO2 hydrate by ethylene oxide and tetrahydrofuran[J]. IOP conference series. Earth and environmental science, 2021, 675(1): 12183. |
[28] | XU J F, DU S, HAO Y C, et al. Molecular simulation study of methane hydrate formation mechanism in NaCl solutions with different concentrations[J]. Chemical Physics, 2021, 551: 111323. |
[29] | CAO X W, WANG H C, YANG K R, et al. Hydrate-based CO2 sequestration technology: Feasibilities, mechanisms, influencing factors, and applications[J]. Journal of Petroleum Science and Engineering, 2022, 219: 111121. |
[30] | Van der WAALS J H, PLATTEEUW J C. Clathrate Solutions[J]. Advance in Chemical Physics, 1959, 2: 1-57. |
[31] | PARRISH W R, PRAUSNITZ J M. Dissociation pressures of gas hydrates formed by gas mixtures[J]. Ind. Eng. Chem. Process Des. Develop., 1972, 11(1): 26-35. |
[32] | NG H J, ROBINSON D B. The measurement and prediction of hydrate formation in liquid hydrocarbon-water systems[J]. Industrial & engineering chemistry fundamentals, 1976, 15(4): 293-298. |
[33] | JOHN V T, HOLDER G D. Langmuir constants for spherical and linear molecules in clathrate hydrates. Validity of the cell theory[J]. Journal of physical chemistry, 1985, 89(15): 3279-3285. |
[34] | BALLARD A L, SLOAN E D, Jr. The next generation of hydrate prediction: I. Hydrate standard states and incorporation of spectroscopy[J]. Fluid Phase Equilibria, 2002, 194-197: 371-383. |
[35] | CHEN G J, GUO T M. Thermodynamic modeling of hydrate formation based on new concepts[J]. Fluid phase equilibria, 1996, 122(1): 43-65. |
[36] | ENGLEZOS P, KALOGERAKIS N, DHOLABHAI P D, et al. Kinetics of formation of methane and ethane gas hydrates[J]. Chemical Engineering Science, 1987, 42(11): 2647-2658. |
[37] | KANG Q J, ZHANG D X, LICHTNER P C, et al. Lattice Boltzmann model for crystal growth from supersaturated solution[J]. Geophysical Research Letters, 2004, 31(21): 133-147. |
[38] | KLAUDA J B, SANDLER S I. A fugacity model for gas hydrate phase equilibria[J]. Industrial & Engineering Chemistry Research, 2000, 39(9): 3377-3386. |
[39] | SLOAN E D Jr. Fundamental principles and applications of natural gas hydrates[J]. Nature, 2003, 426: 353-359. |
[40] | SLOAN E D Jr, FLEYFEL F. A molecular mechanism for gas hydrate nucleation from ice[J]. AIChE journal, 1991, 37(9): 1281-1292. |
[41] | CHRISTIANSEN R L, SLOAN E D. Mechanisms and kinetics of hydrate formation[J]. Annals of the New York Academy of Sciences, 1994, 715(1): 283-305. |
[42] | RADHAKRISHNAN R, TROUT B L. A new approach for studying nucleation phenomena using molecular simulations: Application to CO2 hydrate clathrates[J]. The Journal of Chemical Physics, 2002, 117(4): 1786-1796. |
[43] | HE Z J, LINGA P, JIANG J W. What are the key factors governing the nucleation of CO2 hydrate?[J]. Physical Chemistry Chemical Physics, 2017, 19(24): 15657-15661. |
[44] | 胡腾. 石英砂、铜丝网存在下四氢呋喃水合物生长过程研究[D]. 广州: 华南理工大学, 2015. |
[44] | HU Teng. Studies of tetrahydrofuran hydrate growth in the presence of quartz sand and cooper wire[D]. Guangzhou: South China University of Technology, 2015. |
[45] | GAO Q, ZHAO J Z, YIN Z Y, et al. Experimental study on methane hydrate formation in quartz sand under tri-axial condition[J]. Journal of Natural Gas Science and Engineering, 2021, 85: 103707. |
[46] | DVORKIN J, HELGERUD M B, WAITE W F, et al. Introduction to physical properties and elasticity models[J]. Coastal Systems and Continental Margins, 2000, 5: 245-260. |
[47] | CASCO M E, SILVESTRE-ALBERO J, RAMíREZ-CUESTA A J, et al. Methane hydrate formation in confined nanospace can surpass nature[J]. Nature communications, 2015, 6(1): 6432. |
[48] | RIESTENBERG D, WEST O, LEE S, et al. Sediment surface effects on methane hydrate formation and dissociation[J]. Marine Geology, 2003, 198(1-2): 181-190. |
[49] | LEE M W, COLLETT T S. Elastic properties of gas hydrate-bearing sediments[J]. Geophysical, 2001, 66(3): 763-771. |
[50] | ZHAO Y S, ZHAO J Z, SHI D X, et al. Micro-CT analysis of structural characteristics of natural gas hydrate in porous media during decomposition[J]. Journal of Natural Gas Science and Engineering, 2016, 31: 139-148. |
[51] | UCHIDA T, EBINUMA T, TAKEYA S, et al. Effects of pore sizes on dissociation temperatures and pressures of methane, carbon dioxide, and propane hydrates in porous media[J]. The Journal of Physical Chemistry B, 2002, 106(4): 820-826. |
[52] | LU H, MATSUMOTO R. Preliminary experimental results of the stable P-T conditions of methane hydrate in a nannofossil-rich claystone column[J]. Geochemical Journal, 2002, 36(1): 21-30. |
[53] | CLARKE M A, POOLADI-DARVISH M, BISHNOI P R. A method to predict equilibrium conditions of gas hydrate formation in porous media[J]. Industrial & Engineering Chemistry Research, 1999, 38(6): 2485-2490. |
[54] | 陈强, 业渝光, 刘昌岭, 等. 多孔介质体系中甲烷水合物生成动力学的模拟实验[J]. 海洋地质与第四纪地质, 2007, 27(1): 111-116. |
[54] | CHEN Qiang, YE Yuguang, LIU Cangling, et al. Research on formation kinetics of methane hydrate in porous media[J]. Marine Geology & Quaternary Geology, 2007, 27(1): 111-116. |
[55] | 孙始财, 业渝光, 刘昌岭, 等. 甲烷水合物在石英砂中生成过程研究[J]. 石油与天然气化工, 2011, 40(2): 123-127. |
[55] | SUN Shicai, YE Yuguang, LIU Changling, et al. Research of methane hydrate formation process in quartz sand[J]. Chemical Engineering of Oil & GAS, 2011, 40(2): 123-127. |
[56] | 杨明军, 宋永臣, 刘瑜. 多孔介质及盐度对甲烷水合物相平衡影响[J]. 大连理工大学学报, 2011, 51(1): 31-35. |
[56] | YANG Mingjun, SONG Yongchen, LIU Yu. Effect of porous media and salinity on phase equilibrium of methane hydrates[J]. Journal of Dalian University of Technology, 2011, 51(1): 31-35. |
[57] | 苏向东. 多孔介质+THF+TBAB体系煤层气水合物生成实验及理论研究[D]. 太原: 太原理工大学, 2016. |
[57] | SUN Xiandong. Experiment and theoretical research for formation of coal-bed methane hydrate in porous media+THF+TBAB System[D]. Taiyuan: Taiyuan University of Technology, 2016. |
[58] | SEO Y, LEE H, UCHIDA T. Methane and carbon dioxide hydrate phase behavior in small porous silica gels: Three-phase equilibrium determination and thermodynamic modeling[J]. Langmuir, 2002, 18(24): 9164-9170. |
[59] | MAKOGON Y F. Hydrates of natural gas[M]. Moscow: Nedra, 1974. |
[60] | SMIRNOV V G, MANAKOV A Y, UKRAINTSEVA E A, et al. Formation and decomposition of methane hydrate in coal[J]. Fuel, 2016, 166: 188-195. |
[61] | DYRDIN V V, SMIRNOV V G, SHEPELEVA S A. Parameters of methane condition during phase transition at the outburst-hazardous coal seam edges[J]. Journal of mining science, 2014, 49(6): 908-912. |
[62] | 曹代勇, 秦荣芳, 王安民, 等. 青海木里三露天井田煤系天然气水合物成藏模式与勘查开发建议[J]. 煤田地质与勘探, 2022, 50(3): 92-101. |
[62] | CAO Daiyong, QIN Rongfang, WANG Anmin, et al. Accumulation model and exploration and development suggestions of coal measure gas hydrates in Sanlutian area of Muli Coalfield, Qinghai Province[J]. Coal Geology & Exploration, 2022, 50(3): 92-101. |
[63] | 殷祥, 文怀军, 张文, 等. 木里煤田三露天天然气水合物与煤层关系探讨[J]. 煤炭工程, 2016, 48(6): 119-122. |
[63] | YIN Xiang, WEN Huaijun, ZHANG Wen, et al. Discussion on relationship between coal bed and natural gas hydrates in Sanlutian of Muli Coalfield[J]. Coal Engineering, 2016, 48(6): 119-122. |
[64] | HAO S Q, KIM S, QIN Y, et al. Enhanced methane hydrate storage using sodium dodecyl sulfate and coal[J]. Environmental chemistry letters, 2014, 12(2): 341-346. |
[65] | GAO B, WU C F, SONG Y, et al. Effects of coalification on nano-micron scale pore development: From bituminous to semi-anthracite[J]. Journal of Natural Gas Science and Engineering, 2022, 105: 104681. |
[66] | KUMAR A, SAKPAL T, LINGA P, et al. Impact of fly ash impurity on the hydrate-based gas separation process for carbon dioxide capture from a flue gas mixture[J]. Industrial & Engineering Chemistry Research, 2014, 53(23): 9849-9859. |
[67] | WALSH M R, KOH C A, SLOAN D E, et al. Microsecond simulations of spontaneous methane hydrate nucleation and growth[J]. Science(American Association for the Advancement of Science), 2009, 326(5956): 1095-1098. |
[68] | LI Y, HAN S B, ZHANG B F, et al. Nucleation and dissociation of carbon dioxide hydrate in the inter- and intra-particle pores of dioctahedral smectite: Mechanistic insights from molecular dynamics simulations[J]. Applied Clay Science, 2022, 216: 106344. |
[69] | TUNG Y T, CHEN L J, CHEN Y P, et al. The growth of structure I methane hydrate from molecular dynamics simulations[J]. The Journal of Physical Chemistry B, 2010, 114(33): 10804-10813. |
[70] | LIANG S, ROZMANOV D, KUSALIK P G. Crystal growth simulations of methane hydrates in the presence of silica surfaces[J]. Physical Chemistry Chemical Physics, 2011, 13(44): 19856. |
[71] | 周佳丽. CO2水合物生成特性的分子动力学模拟[D]. 上海: 上海理工大学, 2020. |
[71] | ZHOU Jiali. Melecular dynamic simulations of CO2 hydrate formation[D]. Shanghai: University of Shanghai for Science & Technology, 2020. |
[72] | BAGHERZADEH S A, ENGLEZOS P, ALAVI S, et al. Molecular modeling of the dissociation of methane hydrate in contact with a silica surface[J]. The Journal of Physical Chemistry B, 2012, 116(10): 3188-3197. |
[73] | BAI D S, ZHANG X R, CHEN G J, et al. Replacement mechanism of methane hydrate with carbon dioxide from microsecond molecular dynamics simulations[J]. Energy & environmental science, 2012, 5(5): 733-741. |
[74] | BAI D S, CHEN G J, ZHANG X R, et al. Nucleation of the CO2 hydrate from three-phase contact lines[J]. Langmuir, 2012, 28(20): 7730-7736. |
[75] | BAI D S, LIU B, CHEN G J, et al. Role of guest molecules on the hydrate growth at vapor-liquid interfaces[J]. AIChE journal, 2013, 59(7): 2621-2629. |
[76] | BAI D S, CHEN G J, ZHANG X R, et al. How properties of solid surfaces modulate the nucleation of gas hydrate[J]. Scientific Reports, 2015, 5(1): 1-12. |
[77] | LI Y, CHEN M, TANG H, et al. Insights into carbon dioxide hydrate nucleation on the external basal surface of clay minerals from molecular dynamics simulations[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(19): 6358-6369. |
[78] | LI Y, CHEN M, SONG H Z, et al. Methane hydrate formation in the stacking of kaolinite particles with different surface contacts as nanoreactors: A molecular dynamics simulation study[J]. Applied Clay Science, 2020, 186: 105439. |
[79] | YAN K F, LI X S, CHEN Z Y, et al. Molecular dynamics simulation of the crystal nucleation and growth behavior of methane hydrate in the presence of the surface and nanopores of porous sediment[J]. Langmuir, 2016, 32(31): 7975-7984. |
[80] | 白冬生. 气体水合物成核与生长的分子动力学模拟研究[D]. 北京: 北京化工大学, 2013. |
[80] | BAI Dongsheng. Molecualr dynamics simulation study of THE nucleation and growth of gas hydrates[D]. Beijing: Beijing University of Chemical Technology, 2013. |
[81] | BAI D S, CHEN G J, ZHANG X R, et al. Microsecond molecular dynamics simulations of the kinetic pathways of gas hydrate formation from solid surfaces[J]. Langmuir, 2011, 27(10): 5961-5967. |
[82] | KYUNG D, LIM H, KIM H, et al. CO2 hydrate nucleation kinetics enhanced by an organo-mineral complex formed at the montmorillonite-water interface[J]. Environmental Science & Technology, 2015, 49(2): 1197-1205. |
/
〈 | 〉 |