综合研究

塔里木盆地西南部寒武系充填层序及沉积样式演化

  • 罗少辉 ,
  • 王蓉英 ,
  • 岳勇 ,
  • 李斌 ,
  • 魏华动 ,
  • 金仙梅 ,
  • 姜忠正 ,
  • 曹杨
展开
  • 1.中国石化西北油田分公司,新疆 乌鲁木齐 830011
    2.中海石油(中国)有限公司上海分公司研究院,上海 200335
    3.西南石油大学地球科学与技术学院,四川 成都 610500
罗少辉(1979—),男,硕士,副研究员,主要从事塔里木盆地油气勘探研究工作。地址:新疆维吾尔自治区乌鲁木齐市新市区长春南路466号,邮政编码:830011。E-mail: luoshaohui1@163.com

收稿日期: 2023-10-26

  网络出版日期: 2024-05-07

基金资助

四川省区域创新合作项目“复杂油藏高效开发相关技术研究及推广应用”(21QYCX0048)

Cambrian infill sequence and sedimentary evolution in southwestern Tarim Basin

  • Shaohui LUO ,
  • Rongying WANG ,
  • Yong YUE ,
  • Bin LI ,
  • Huadong WEI ,
  • Xianmei JIN ,
  • Zhongzheng JIANG ,
  • Yang CAO
Expand
  • 1. Sinopec Northwest Oilfield Company, Urumqi, Xinjiang 830011, China
    2. Research of Shanghai Branch, CNOOC(China) Co., Ltd., Shanghai 200335, China
    3. School of Geoscience and Technology, Southwest Petroleum University, Chengdu, Sichuan 610500, China

Received date: 2023-10-26

  Online published: 2024-05-07

摘要

针对塔里木盆地西南部寒武系存在的古隆起陆棚相分歧,利用锆石U-Pb(铀-铅同位素测年)年龄、井-震联合开展了寒武系层序充填与沉积演化的研究。研究表明:在巴楚隆起,寒武系直接覆盖在克拉通结晶基底之上,寒武系沉积充填与前寒武系结构呈“镜像”关系。受前寒武系地形、构造运动和海平面升降控制,塔里木盆地西南部寒武系发育4个Ⅱ级层序,分别为寒武系层序1(玉尔吐斯组—肖尔布拉克组)、寒武系层序2(吾松格尔组—沙依里克组)、寒武系层序3(阿瓦塔格组)、寒武系层序4(下丘里塔格群),共包含7个沉积相、10个沉积亚相。塔里木盆地西南部寒武系层序1—寒武系层序3早、中寒武世巴楚隆起—麦盖提斜坡—塔西南坳陷沉积相为台地—缓坡—斜坡—深水陆棚相沉积,表现为向海凝缩减薄的沉积特征并发育寒武系烃源岩;寒武系层序4晚寒武世塔里木盆地西南部主体演化为局限台地,塔里木盆地西台东盆沉积格局正式形成。

本文引用格式

罗少辉 , 王蓉英 , 岳勇 , 李斌 , 魏华动 , 金仙梅 , 姜忠正 , 曹杨 . 塔里木盆地西南部寒武系充填层序及沉积样式演化[J]. 油气藏评价与开发, 2024 , 14(2) : 284 -296 . DOI: 10.13809/j.cnki.cn32-1825/te.2024.02.014

Abstract

In the southwestern Tarim Basin, studies on the paleo-uplift and shelf divergence have focused on the sedimentary evolution and sequence filling during the Cambrian period. This research used zircon U-Pb dating and well-seismic technologies. The findings indicate that Cambrian deposits overlay the basin's basement structures, particularly in the Bachu uplift area. The Cambrian sedimentation patterns closely mirror the underlying basement tectonics. Influenced by these tectonics, along with tectonic movements and sea-level changes, four distinct sequences emerged in the Cambrian: the Yuertusi to Xiaoerbulake formations, the Wusonggeer to Shayilike formations, the Awatage Formation, and the Lower Qiulitage Formation. Additionally, seven sedimentary facies and ten depositional sub-facies were identified. From the first to the third Cambrian sequence, spanning the early to middle Cambrian, the area transitioned from a platform to a gentle slope, then to a steeper slope and finally to a deep shelf. This progression indicates a retreat towards the sea, fostering the development of Cambrian source rocks. In the late Cambrian, during the fourth sequence, the southwestern Tarim Basin transformed into a restricted platform. This period marked the establishment of the sedimentary framework in the Tarim Basin, with distinct eastern basin and western platform regions.

参考文献

[1] 贾承造, 李本亮, 张兴阳, 等. 中国海相盆地的形成与演化[J]. 科学通报, 2007, 52(增刊1): 1-8.
[1] JIA Chengzao, LI Benliang, ZHANG Xingyang, et al. Formation and evolution of marine basins in China[J]. Chinese Science Bulletin, 2007, 52(suppl. 1): 1-8.
[2] 漆立新. 塔里木盆地下古生界碳酸盐岩大油气田勘探实践与展望[J]. 石油与天然气地质, 2014, 35(6): 771-779.
[2] QI Lixin. Exploration practice and prospects of giant carbonate field in the Lower Paleozoic of Tarim Basin[J]. Oil & Gas Geology, 2014, 35(6): 771-779.
[3] 王招明, 谢会文, 陈永权, 等. 塔里木盆地中深1井寒武系盐下白云岩原生油气藏的发现与勘探意义[J]. 中国石油勘探, 2014, 19(2): 1-13.
[3] WANG Zhaoming, XIE Huiwen, CHEN Yongquan, et al. Discovery and exploration of cambrian subsalt dolomite original hydrocarbon reservoir at Zhongshen-1 Well in Tarim Basin[J]. China Petroleum Exploration, 2014, 19(2): 1-13.
[4] 何登发, 贾承造, 李德生, 等. 塔里木多旋回叠合盆地的形成与演化[J]. 石油与天然气地质, 2005, 26(1): 64-77.
[4] HE Dengfa, JIA Chengzao, LI Desheng, et al. Formation and evolution of polycyclic superimposed Tarim Basin[J]. Oil &Gas Geology, 2005, 26(1): 64-77.
[5] 陈永权, 严威, 韩长伟, 等. 塔里木盆地寒武纪-早奥陶世构造古地理与岩相古地理格局再厘定——基于地震证据的新认识[J]. 天然气地球科学, 2015, 26(10): 1831-1843.
[5] CHEN Yongquan, YAN Wei, HAN Changwei, et al. Redefinition on structural paleogeography and lithofacies paleogeography framework from Cambrian to early Ordovician in the Tarim basin: A new approach based on seismic stratigraphy evidence[J]. Natural Gas Geoscience, 2015, 26(10): 1831-1843.
[6] 杨永剑, 刘家铎, 田景春, 等. 塔里木盆地寒武纪层序岩相古地理特征[J]. 天然气地球科学, 2011, 22(3): 450-459.
[6] YANG Yongjian, LIU Jiaduo, TIAN Jingchun, et al. Sequence lithofacies paleogeography of Cambrian in Tarim Basin[J]. Natural Gas Geoscience, 2011, 22(3): 450-459.
[7] 何敏, 朱晓军, 朱伟林, 等. 南海北部潮汕坳陷中生界烃源岩特征及分布预测[J]. 中国海上油气, 2023, 35(1): 40-49.
[7] HE Min, ZHU Xiaojun, ZHU Weilin, et al. Characteristics and distribution prediction of Mesozoic source rocks in Chaoshan depression, northern South China Sea[J]. China Offshore Oil and Gas, 2023, 35(1): 40-49.
[8] 郝立华, 李丹, 刘小龙, 等. 西南非海岸盆地烃源岩研究新认识及勘探意义[J]. 中国海上油气, 2022, 34(3): 12-19.
[8] HAO Lihua, LI Dan, LIU Xiaolong, et al. New findings from the study on source rock of southwest Africa Coastal Basin and its significance to exploration[J]. China Offshore Oil and Gas, 2022, 34(3): 12-19.
[9] 许效松, 汪正江, 万方, 等. 塔里木盆地早古生代构造古地理演化与烃源岩[J]. 地学前缘, 2005, 12(3): 49-57.
[9] XU Xiaosong, WANG Zhengjiang, WAN Fang, et al. Tectonic paleogeographic evolution and source rocks of the Early Paleozoic in the Tarim Basin[J]. Earth Science Frontiers, 2005, 12(3): 49-57.
[10] 潘桂棠, 李兴振, 王立全, 等. 青藏高原及邻区大地构造单元初步划分[J]. 地质通报, 2002, 21(11): 701-707.
[10] PAN Guitang, LI Xingzhen, WANG Liquan, et al. Preliminary division of tectonic units of the Qinghai-Tibet Plateau and its adjacent regions[J]. Geological Bulletin of China, 2002, 21(11): 701-707.
[11] 杨鑫, 徐旭辉, 钱一雄, 等. 塔里木盆地基底组成的区域差异性探讨[J]. 大地构造与成矿学, 2014, 38(3): 544-556.
[11] YANG Xin, XU Xuhui, QIAN Yixiong, et al. Discussion on regional differences of basement composition of the Tarim Basin, NW China[J]. Geotectonica et Metallogenia, 2014, 38(3): 544-556.
[12] 李宇翔, 李国蓉, 顾炎午, 等. 塔中地区寒武系——下奥陶统白云岩层序不整合面控制的大气水溶蚀作用研究[J]. 岩性油气藏, 2009, 21(2): 45-48.
[12] LI Yuxiang, LI Guorong, GU Yanwu, et al. Meteoric water karstification controlled by sequence unconformity of Cambrian-Lower Ordovician in Tazhong area[J]. Lithologic Reservoirs, 2009, 21(2): 45-48.
[13] 陈强路, 储呈林, 杨鑫, 等. 塔里木盆地寒武系沉积模式与烃源岩发育[J]. 石油实验地质, 2015, 37(6): 689-695.
[13] CHEN Qianglu, CHU Chenglin, YANG Xin, et al. Sedimentary model and development of the Cambrian source rocks in the Tarim basin, NW China[J]. Petroleum Geology Experiment, 2015, 37(6): 689-695.
[14] 王坤, 刘伟, 黄擎宇, 等. 多资料约束下的塔里木盆地寒武系层序地层划分与对比[J]. 海相油气地质, 2016, 21(3): 1-12.
[14] WANG Kun, LIU Wei, HUANG Qingyu, et al. Division and correlation of Cambrian stratigraphic sequences under multiple data constraint, Tarim Basin[J]. Marine Origin Petroleum Geology, 2016, 21(3): 1-12.
[15] 高华华, 何登发, 童晓光, 等. 塔里木盆地寒武纪构造-沉积环境与原型盆地演化[J]. 现代地质, 2017, 31(1): 102-118.
[15] GAO Huahua, HE Dengfa, TONG Xiaoguang, et al. Tectonic-depositional environment and proto-type basin evolution of the Cambrian in the Tarim Basin[J]. Geoscience, 2017, 31(1): 102-118.
[16] 田雷, 崔海峰, 刘军, 等. 塔西南坳陷早、中寒武世岩相古地理格局分析[J]. 东北石油大学学报, 2016, 40(6): 19-25.
[16] TIAN Lei, CUI Haifeng, LIU Jun, et al. Analysis on the palaeogeographic framework of the early-middle Cambrian in southwest depression of Tarim basin[J]. Journal of Northeast Petroleum University, 2016, 40(6): 19-25.
[17] 刘沛显, 关平, 冯帆, 等. 塔西台地寒武纪沉积环境演化与海陆耦合[J]. 沉积学报, 2016, 34(6): 1092-1107.
[17] LIU Peixian, GUAN Ping, FENG Fan, et al. Evolution of Cambrian sedimentary environment and ocean-land coupling of the western Tarim carbonate platfrom[J]. Acta Sedimentologica Sinica, 2016, 34(6): 1092-1107.
[18] 米立军, 吴克强, 刘志峰, 等. 从扬子地区海相烃源岩分布规律看南黄海盆地中—古生界有利勘探领域[J]. 中国海上油气, 2022, 34(2): 1-13.
[18] MI Lijun, WU Keqiang, LIU Zhifeng, et al. Favorable exploration field analysis of Mesozoic-Paleozoic in South Yellow Sea basin from the distribution characteristics of marine source rocks in the Yangtze region[J]. China Offshore Oil and Gas, 2022, 34(2): 1-13.
[19] 崔海峰, 田雷, 张年春, 等. 塔西南坳陷寒武系玉尔吐斯组烃源岩分布特征[J]. 天然气地球科学, 2016, 27(4): 577-583.
[19] CUI Haifeng, TIAN Lei, ZHANG Nianchun, et al. Distribution characteristics of the source rocks from Cambrian Yuertusi Formation in the Southwest Depression of Tarim Basin[J]. Natural Gas Geoscience, 2016, 27(4): 577-583.
[20] 宋亚芳, 陈代钊, 郭川, 等. 塔里木盆地肖尔布拉克剖面肖尔布拉克组下段微生物碳酸盐岩沉积特征[J]. 沉积学报, 2020, 38(1): 55-63.
[20] SONG Yafang, CHEN Daizhao, GUO Chuan, et al. Depositional characteristics of microbial carbonates from the Lower Xiaoerbulak Formation in the Xiaoerbulake Section, Tarim Basin[J]. Acta Sedimentologica Sinica, 2020, 38(1): 55-63.
[21] 傅新康, 黄中伟, 史怀忠, 等. 锥形齿与平面齿切削碳酸盐岩特征对比分析[J]. 石油机械, 2023, 51(7): 59-67.
[21] FU Xinkang, HUANG Zhongwei, SHI Huaizhong, et al. Comparative analysis on characteristics of cutting carbonate rocks with conical and planar cutters[J]. China Petroleum Machinery, 2023, 51(7): 59-67.
[22] 刘培, 彭光荣, 熊万林, 等. 珠江口盆地惠州凹陷惠东新区恩平组烃源岩生烃特征及成藏贡献[J]. 中国海上油气, 2024, 36(1): 49-60.
[22] LIU Pei, PENG Guangrong, XIONG Wanlin, et al. Hydrocarbon generation characteristics and reservoir forming contribution of Enping Formation source rocks in Huidong new area, Huizhou sag, Pearl River Mouth Basin[J]. China Offshore Oil and Gas, 2024, 36(1): 49-60.
文章导航

/