专家论坛

深层低渗凝析气藏气驱适应性研究

  • 李中超 ,
  • 齐桂雪 ,
  • 罗波波 ,
  • 许寻 ,
  • 陈华
展开
  • 1.中国石化酸性气开发重点实验室,河南 濮阳 457000
    2.中国石化中原油田分公司勘探开发研究院,河南 濮阳 457000
    3.中国石化中原油田分公司,河南 濮阳 457000
李中超(1971—),男,博士,正高级工程师,主要从事油气开发研究及工程建设工作。地址:河南省濮阳市华龙区中原路277号,邮政编码:457000。E-mail: lizc.zyyt@sinopec.com

收稿日期: 2024-03-11

  网络出版日期: 2024-07-10

基金资助

中国石化重点科技项目“东濮高压低渗油藏改善气驱效果关键技术”(P17003-4);中国石化重点科技项目“中原油田桥白凝析气藏注气提高采收率技术研究”(P19019-6)

Gas flooding adaptability of deep low permeability condensate gas reservoir

  • Zhongchao LI ,
  • Guixue QI ,
  • Bobo LUO ,
  • Xun XU ,
  • Hua CHEN
Expand
  • 1. Sinopec Key Laboratory of Acid Gas Development, Puyang, Henan 457000, China
    2. Research Institute of Exploration and Development, Sinopec Zhongyuan Oilfield, Puyang, Henan 457000, China
    3. Sinopec Zhongyuan Oilfield, Puyang, Henan 457000, China

Received date: 2024-03-11

  Online published: 2024-07-10

摘要

针对深层低渗凝析气藏由衰竭开采转变为气驱开发过程中适应性不明确的问题,综合采用PVT(地层流体高压物性)分析仪、长岩心驱替物理模拟技术和数值模拟计算方法,开展了一系列评价研究。通过对比分析注CO2、天然气(伴生气、CH4)、N2对凝析气体系高压物性影响与提高凝析油采出程度情况,明确了深层低渗凝析气藏气驱的适应性。实验结果表明:CO2在凝析油中的溶解度和溶解气油比最大,具有较强降低凝析气藏饱和压力和露点压力的特点,提高凝析油采出程度的效果最佳。同时,采用长岩心物理模拟技术针对CO2驱进行了注入时机、注入方式、注气速度优化研究,明确了在露点压力以上脉冲式注气效果更好,为注气开发技术政策及现场方案的实施提供数据支撑。

本文引用格式

李中超 , 齐桂雪 , 罗波波 , 许寻 , 陈华 . 深层低渗凝析气藏气驱适应性研究[J]. 油气藏评价与开发, 2024 , 14(3) : 324 -332 . DOI: 10.13809/j.cnki.cn32-1825/te.2024.03.002

Abstract

The transition from depletion mining to gas flooding in deep low permeability condensate gas reservoirs poses significant adaptability challenges. To address these, a series of evaluation studies were conducted using the Pressure-Volume-Temperature(PVT)analyzer, long core displacement physical simulation technology, and numerical simulation calculations. This research specifically examines the impacts of CO2 injection, natural gas(associated gas or pure CH4), and nitrogen(N2)on the high-pressure physical properties of condensate gas systems and their potential to improve condensate oil recovery. Comparative analyses reveal that CO2, due to its high solubility and favorable gas-oil dissolution ratio in condensate oil, significantly reduces the saturation pressure and dew-point pressure of condensate gas reservoirs, thereby offering the most substantial improvement in oil recovery rates. Further optimization studies using long core physical simulation technology focused on injection timing, modes, and rates for CO2 flooding. It was determined that pulsed gas injection strategies are particularly effective when implemented above the dew-point pressure. These findings provide essential data to support the formulation of technical policies and field plans for gas injection development in such challenging reservoir conditions.

参考文献

[1] 白俊, 张雄君. 中国天然气供应安全形势与建议[J]. 天然气技术与经济, 2020, 14(1): 1-5.
[1] BAI Jun, ZHANG Xiongjun. China's natural-gas supply security and its suggestions[J]. Natural Gas Technology and Economy, 2020, 14(1): 1-5.
[2] 李云峰, 吴晓红, 李然, 等. 高5断块深层致密油水平井钻井关键技术实践[J]. 石油机械, 2023, 51(11): 102-107.
[2] LI Yunfeng, WU Xiaohong, LI Ran, et al. Practice of key technologies for drilling horizontal well in deep tight oil reservoir of Gao 5 Fault Block[J]. China Petroleum Machinery, 2023, 51(11): 102-107.
[3] 刘成林, 任杨, 孙林, 等. 海上特低渗砂岩储层酸化增效技术研究与应用[J]. 石油机械, 2022, 50(9): 117-124.
[3] LIU Chenglin, REN Yang, SUN Lin, et al. Research and application of acidizing technology in offshore ultra-low permeability sandstone reservoir[J]. China Petroleum Machinery, 2022, 50(9): 117-124.
[4] 刘平, 李中超, 齐桂雪, 等. 高温高盐油藏CO2混相调节剂效果因素室内评价[J]. 断块油气田, 2022, 29(6): 749-753.
[4] LIU Ping, LI Zhongchao, QI Guixue, et al. Experimental evaluation on the effect factor of CO2 miscible regulator in high temperature and high salinity reservoir[J]. Fault-Block Oil & Gas Field, 2022, 29(6): 749-753.
[5] 齐桂雪, 李中超, 刘平, 等. 凝析气藏气驱二维填砂物理模型实验研究[J]. 断块油气田, 2022, 29(2): 164-170.
[5] QI Guixue, LI Zhongchao, LIU Ping, et al. An experimental study of two-dimensional sand filling physical model for gas flooding in condensate gas reservoir[J]. Fault-Block Oil & Gas Field, 2022, 29(2): 164-170.
[6] 王义凤, 李剑, 国建英, 等. 中国凝析油分布、成藏特征及新成因分类[J/OL]. 天然气地球科学: 1-14[2024-04-10]. http://kns.cnki.net/kcms/detail/62.1177.TE.20240405.1542.004.html.
[6] WANG Yifeng, LI Jian, GUO Jianying, et al. Distribution, accumulation characteristics and new genetic classification of condensate oil in China[J/OL]. Natural Gas Geoscience: 1-14[2024-04-10]. http://kns.cnki.net/kcms/detail/62.1177.TE.20240405.1542.004.html.
[7] 赵陶然, 王飞宇, 彭靖淞, 等. CO2充注对油气藏相态的影响及凝析气藏成因分析——以渤中19-6凝析气藏为例[J]. 中国海上油气, 2023, 35(5): 24-34.
[7] ZHAO Taoran, WANG Feiyu, PENG Jingsong, et al. Influence of CO2 injection on phase behavior of oil and gas reservoirs and analysis of gas condensate reservoir genesis: A case study of BZ19-6 gas condensate reservoir[J]. China Offshore Oil and Gas, 2023, 35(5): 24-34.
[8] 雷霄, 王雯娟, 李跃林, 等. 考虑水蒸发的高温凝析气藏数值模拟方法[J]. 中国海上油气, 2022, 34(5): 101-107.
[8] LEI Xiao, WANG Wenjuan, LI Yuelin, et al. Numerical simulation for high temperature condensate gas reservoirs considering water evaporation[J]. China Offshore Oil and Gas, 2022, 34(5): 101-107.
[9] 沈建新, 刘建仪, 刘举, 等. 迪那2气藏凝析水结垢规律实验研究[J]. 中国海上油气, 2022, 34(1): 94-101.
[9] SHEN Jianxin, LIU Jianyi, LIU Ju, et al. Experimental study on scaling law of condensate water in Dina 2 gas reservoir[J]. China Offshore Oil and Gas, 2022, 34(1): 94-101.
[10] 王威翔, 周志军, 张祺, 等. 凝析气藏高压物性及反凝析污染评价实验[J]. 石油化工应用, 2023, 42(9): 45-49.
[10] WANG Weixiang, ZHOU Zhijun, ZHANG Qi, et al. Evaluation experiment of high pressure physical properties and reverse condensate pollution of condensate gas reservoir[J]. Petrochemical Industry Application, 2023, 42(9): 45-49.
[11] 兰晶晶, 唐帆, 谢代培, 等. 致密油藏 CO2 驱油提高采收率实验研究[J]. 当代化工, 2023, 52(4): 997-1001.
[11] LAN Jingjing, TANG Fan, XIE Daipei, et al. Study on enhanced oil recovery by CO2 flooding in tight oil reservoirs[J]. Contemporary Chemical Industry, 2023, 52(4): 997-1001.
[12] 李凤, 张本艳, 朱婧. 致密砂岩气藏反凝析伤害及开采对策研究[J]. 西南石油大学学报(自然科学版), 2022, 44(3): 197-206.
[12] LI Feng, ZHANG Benyan, ZHU Jing. Research on the retrograde condensate damage and development strategies in tights and stone gas reservoir[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2022, 44(3): 197-206.
[13] 冯强汉, 邓宝康, 杨映洲, 等. 致密砂岩凝析气藏反凝析伤害评价及解除方法[J]. 大庆石油地质与开发, 2020, 39(2): 139-146.
[13] FENG Qianghan, DENG Baokang, YANG Yingzhou, et al. Evaluations and removing methods of the retrograde condensate damage for the gas condensate reservoirs in the tight sandstone[J]. Petroleum Geology & Oilfield Development in Daqing, 2020, 39(2): 139-146.
[14] 胡永乐, 罗凯, 李相方, 等. 凝析、低渗气藏流体相态与渗流机理[M]. 北京: 科学出版社, 2010.
[14] HU Yongle, LUO Kai, LI Xiangfang, et al. Fluid phase and percolation mechanism of condensate and low permeability gas reservoirs[M]. Beijing: Science Press, 2010.
[15] 陈文龙, 廖发明, 吕波, 等. 牙哈凝析气藏注气开发过程反蒸发动态相态特征[J]. 天然气工业, 2012, 32(8): 67-70.
[15] CHEN Wenlong, LIAO Faming, LYU Bo, et al. Retrograde vaporization dynamic phase behaviors in gas injection development of the Yaha condensate gas reservoir[J]. Natural Gas Industry, 2012, 32(8): 67-70.
[16] 姜贻伟, 毕建霞, 李闽, 等. 凝析气井反凝析污染对产能影响研究[J]. 西南石油大学学报(自然科学版), 2005, 27(6): 46-47.
[16] JIANG Yiwei, BI Jianxia, LI Min, et al. Study of the effect of retrograde condensation pollution on the productivity of condensate gas well[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2005, 27(6): 46-47.
[17] 高建军, 韩继凡, 郝巍, 等. 丘东气田反凝析污染评价及解除方法研究[J]. 特种油气藏, 2010, 17(2): 85-87.
[17] GAO Jianjun, HAN Jifan, HAO Wei, et al. Study on evaluation and removal of retrograde condensate damage in Qiudong gas field[J]. Special Oil & Gas Reservoir, 2010, 17(2): 85-87.
[18] 刘会锋, 袁学芳, 赵新武, 等. 塔里木吉拉克TII储层伤害因素分析及对策[J]. 钻采工艺, 2015, 38(1): 66-68.
[18] LIU Huifeng, YUAN Xuefang, ZHAO Xinwu, et al. Analysis of factors causing formation damage in Tarim Jilake TII reservoir and their solutions[J]. Drilling & Production Technology, 2015, 38(1): 66-68.
[19] 李骞, 李相方, 单江, 等. 凝析气藏生产过程中气油比异常原因分析[J]. 天然气工业, 2012, 31(6): 63-65.
[19] LI Qian, LI Xiangfang, SHAN Jiang, et al. An analysis of reasons for unusual GOR behaviors in the production of gas condensate reservoirs[J]. Natural Gas Industry, 2012, 31(6): 63-65.
[20] 李元生, 伍锐东, 邓雅婷, 等. 基于界面张力影响的凝析气藏相渗时变表征方法[J]. 断块油气田, 2022, 29(6): 854-858.
[20] LI Yuansheng, WU Ruidong, DENG Yating, et al. Characterization method of time-varying relative permeability in condensate gas reservoir based on influence of interfacial tension[J]. Fault-Block Oil & Gas Field, 2022, 29(6): 854-858.
[21] 夏彪, 崔飞飞, 孙雷, 等. X区块注CO2和N2提高反凝析油采收率机理研究[J]. 复杂油气藏, 2013, 6(1): 50-53.
[21] XIA biao, CUI Feifei, SUN Lei, et al. Study on mechanisms of enhanced condensate oil by CO2 and N2 gas injection in Block X[J]. Complex Hydrocarbon Reservoirs, 2013, 6(1): 50-53.
[22] 张可. CO2与地层油体系界面特征及应用研究[D]. 廊坊: 中国科学院研究生院, 2011.
[22] ZHANG Ke. Interfacial characteristics and application research on CO2-formation oil system[D]. Langfang: Graduate School of Chinese Academy of Sciences, 2011.
[23] 邓瑞健, 齐桂雪, 谭肖, 等. 烃组分对CO2驱最小混相压力的影响[J]. 石油与天然气化工, 2018, 47(6): 59-63.
[23] DENG Ruijian, QI Guixue, TAN Xiao, et al. Influence of hydrocarbon components on the minimum miscibility pressure of CO2 flooding[J]. Chemical Engineering of Oil & Gas, 2018, 47(6): 59-63.
[24] 郑晨明, 徐庆松, 李春胜, 等. 超临界CO2流体萃取技术应用综述[J]. 低温与特气, 2024, 42(1): 12-16.
[24] ZHENG Chenming, XU Qingsong, LI Chunsheng, et al. Review of the application of supercritical CO2 fluid extraction technology[J]. Low Temperature and Specialty Gases, 2024, 42(1): 12-16.
[25] 冯甜甜. 超临界CO2对石油分子的萃取选择性[D]. 北京: 中国石油大学, 2023.
[25] FENG Tiantian. Extraction selectivity of petroleum molecules by supercritical CO2[D]. Beijing: China University of Petroleum, 2023.
[26] 冯文池, 张维维. 浅谈超临界CO2萃取技术[J]. 山东化工, 2022, 51(10): 80-82.
[26] FENG Wenchi, ZHANG Weiwei. Discussion on supercritical CO2 extraction technology[J]. Shandong Chemical Industry, 2022, 51(10): 80-82.
[27] 李士伦, 王鸣华, 何江川. 气田与凝析气田开发[M]. 北京: 石油工业出版社, 2004.
[27] LI Shilun, WANG Minghua, HE Jiangchuan. Gas and condensate field development[M]. Beijing: Petroleum Industry Press, 2004.
[28] AMRO M, FREESE C, FINCK M, et al. Effect of CO2-miscibility in EOR[C]// Paper SPE-172705-MS presented at the SPE Middle East Oil & Gas Show and Conference, Manama, Bahrain, March 2015.
[29] 田巍. 凝析气藏注CO2提高采收率机理物理模拟[J]. 天然气地球科学, 2021, 32(10): 1592-1600.
[29] TIAN Wei. Physical simulation of EOR mechanism by CO2 injection for condensate gas reservoir[J]. Natural Gas Geoscience, 2021, 32(10): 1592-1600.
[30] 顾文欢. 2020油气田勘探与开发国际会议论文集[C]. 成都: 陕西省石油学会, 2020.
[30] GU Wenhuan. Proceedings of the international field exploration and development conference 2020[C]. Chengdu: Shaanxi Petroleum Society, 2020.
文章导航

/