油气藏评价与开发 >
2024 , Vol. 14 >Issue 3: 352 - 363
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2024.03.005
页岩油水平井组压裂动态应力场研究
收稿日期: 2023-07-06
网络出版日期: 2024-07-10
基金资助
国家自然科学基金项目“一种复杂缝网的能量断裂准则及其在致密砂岩压裂模拟中的应用”(11672333)
Study on dynamic stress field for fracturing in horizontal well group of shale oil
Received date: 2023-07-06
Online published: 2024-07-10
水平井组开发页岩油是基于水平单井压裂局限性提出的新型压裂方式。在水平井组压裂过程中,由于存在多口井和多条人工裂缝,且裂缝周围应力变化和井间地应力分布复杂,这种复杂的应力变化将进一步影响裂缝的扩展形态。因此,深入研究水平井组中不同压裂方式下应力场的变化机理和规律对于控制裂缝形态和提高裂缝复杂度具有重要意义。针对页岩油储层压裂改造过程中应力分布问题,通过构建水力压裂数值模型,系统地研究水平井组不同压裂方式下应力场的变化机理和规律以及裂缝扩展后的应力场变化规律,并基于裂缝的形态特点进行了压裂效果的定量评价。研究表明: ①同步压裂布缝方式可以有效影响井间地应力的变化,相较于正对布缝方式,交错布缝方式在井间产生的诱导应力提高了24%,并在相同井距下更容易引起井间地应力转向;②交错布缝方式下所形成的裂缝形态更为优越,压裂效果更为显著,交错布缝能有效提高裂缝的长度和宽度,使裂缝表面积和体积增大了4.6%和21.1%;③拉链压裂所形成的裂缝形态更为优越,压裂效果优于同步压裂,进一步增大了裂缝长度和宽度,使裂缝总表面积和总体积增大了1.3%和0.1%。
赵海峰 , 王腾飞 , 李忠百 , 梁为 , 张涛 . 页岩油水平井组压裂动态应力场研究[J]. 油气藏评价与开发, 2024 , 14(3) : 352 -363 . DOI: 10.13809/j.cnki.cn32-1825/te.2024.03.005
The deployment of horizontal well groups for shale oil development represents an innovative approach to fracturing, addressing the constraints observed in single horizontal wells. This study focuses on the fracturing dynamics within groups of horizontal wells, where the interplay of multiple wells and artificial fractures introduces complex variations in stress around the fractures and the in-situ stress distribution between wells. Such complexities significantly influence the morphology of fracture propagation. A comprehensive investigation into the stress field dynamics under various fracturing methods in horizontal well groups was conducted using a hydraulic fracturing numerical model. This research is crucial for manipulating fracture morphology and enhancing fracture complexity. The study systematically explored the stress distribution during the shale oil reservoir fracturing reconstruction, analyzed fracture morphologies, and quantitatively assessed the fracturing outcomes. Key findings include: ① Synchronous fracturing effectively alters inter-well ground stress, with the staggered pattern inducing a 24% higher stress compared to the opposite pattern, thereby influencing the direction and reversal of ground stress under identical well spacing. ② Staggered layout exhibit superior shape and fracturing effects than those under the opposite layout, significantly increasing the length, width, surface area, and volume of fractures by 4.6% and 21.1%, respectively. ③ Zipper fracturing enhances fracture dimensions more effectively than synchronous fracturing, increasing the total surface area and volume of the fractures by 1.3% and 0.1%, respectively.
[1] | 李旺. 水力压裂过程中诱导应力扰动机制的数值模拟研究[D]. 大连: 大连理工大学, 2016. |
[1] | LI Wang. Numerical simulation research on mechanism of induced stress perturbation in the process of hydraulic fracturing[D]. Dalian: Dalian University of Technology, 2016. |
[2] | 雷群, 翁定为, 熊生春, 等. 中国石油页岩油储集层改造技术进展及发展方向[J]. 石油勘探与开发, 2021, 48(5): 1035-1042. |
[2] | LEI Qun, WENG Dingwei, XIONG Shengchun, et al. Progress and development direction of shale oil reservoir stimulation technology of China National Petroleum Corporation[J]. Petroleum Exploration and Development, 2021, 48(5): 1035-1042. |
[3] | 郭秋麟, 米石云, 张倩, 等. 中国页岩油资源评价方法与资源潜力探讨[J]. 石油实验地质, 2023, 45(3): 402-412. |
[3] | GUO Qiulin, MI Shiyun, ZHANG Qian, et al. Assessment methods and potential of shale oil resources in China[J]. Petroleum Geology & Experiment, 2023, 45(3): 402-412. |
[4] | 冯动军. 四川盆地侏罗系大安寨段陆相页岩油气地质特征及勘探方向[J]. 石油实验地质, 2022, 44(2): 219-230. |
[4] | FENG Dongjun. Geological characteristics and exploration direction of continental shale gas in Jurassic Da'anzhai Member, Sichuan Basin[J]. Petroleum Geology & Experiment, 2022, 44(2): 219-230. |
[5] | 谢紫霄, 黄中伟, 熊建华, 等. 天然裂缝对干热岩水力压裂裂缝扩展的影响规律[J]. 天然气工业, 2022, 42(4): 63-72. |
[5] | XIE Zixiao, HUANG Zhongwei, XIONG Jianhua, et al. Influence of natural fractures on the propagation of hydraulic fractures in hot dry rock[J]. Natural Gas Industry, 2022, 42(4): 63-72. |
[6] | 翁定为, 严星明, 卢拥军, 等. 考虑应力干扰的致密油气压裂设计及实现方法[J]. 中国矿业大学学报, 2014, 43(4): 639-645. |
[6] | WENG Dingwei, YAN Xingming, LU Yongjun, et al. Optimization and realization of stress interference in tight oil and gas reservoir[J]. Journal of China University of Mining & Technology, 2014, 43(4): 639-645. |
[7] | 郭建春, 尹建, 赵志红. 裂缝干扰下页岩储层压裂形成复杂裂缝可行性[J]. 岩石力学与工程学报, 2014, 33(8): 1589-1596. |
[7] | GUO Jianchun, YIN Jian, ZHAO Zhihong. Feasibility of formation of complex fractures under cracks interference in shale reservoir fracturing[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(8): 1589-1596. |
[8] | NAGEL N B, SANCHE-NAGEL M. Stress shadowing and microseismic events: A numerical evaluation[C]// Paper SPE-147363-MS presented at the SPE Annual Technical Conference and Exhibition, Denver, Colorado, USA, October 2011. |
[9] | KRESSE O, WENG X W, GU H R, et al. Numerical modeling of hydraulic fractures interaction in complex naturally fractured formations[J]. Rock Mechanics and Rock Engineering, 2013, 46: 555-568. |
[10] | 郭建春, 周鑫浩, 邓燕. 页岩气水平井组拉链压裂过程中地应力的分布规律[J]. 天然气工业, 2015, 35(7): 44-48. |
[10] | GUO Jianchun, ZHOU Xinhao, DENG Yan. Distribution rules of earth stress during zipper fracturing of shale gas horizontal cluster wells[J]. Natural Gas Industry, 2015, 35(7): 44-48. |
[11] | 刘立峰, 冉启全, 王欣, 等. 致密储层水平井体积压裂段间距优化方法[J]. 石油钻采工艺, 2015, 37(3): 84-87. |
[11] | LIU Lifeng, RAN Qiquan, WANG Xin, et al. Method of optimizing the spacing between volumetric fracturing stages in horizontal wells in tight reservoir[J]. Oil Drilling & Production Technology, 2015, 37(3): 84-87. |
[12] | 张广明, 刘勇, 刘建东, 等. 页岩储层体积压裂的地应力变化研究[J]. 力学学报, 2015, 47(6): 965-972. |
[12] | ZHANG Guangming, LIU Yong, LIU Jiandong, et al. Research on the geostress change of shale reservoir volume fracturing[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 965-972. |
[13] | JIANG W, CAI B, YANG L, et al. Optimum time and critical re-orientation pressure of re-fracturing[C]// Paper SPE-181837-MS presented at the SPE Asia Pacific Hydraulic Fracturing Conference, Beijing, China, August 2016. |
[14] | 李士斌, 官兵, 张立刚, 等. 水平井压裂裂缝局部应力场扰动规律[J]. 油气地质与采收率, 2016, 23(6): 112-119. |
[14] | LI Shibin, GUAN Bing, ZHANG Ligang, et al. Local stress field disturbance law of horizontal well fracturing[J]. Petroleum Geology and Recovery Efficiency, 2016, 23(6): 112-119. |
[15] | 李士斌, 官兵, 张立刚, 等. 水平井裂缝诱导应力场影响因素分析[J]. 中国煤炭地质, 2016, 28(5): 24-28. |
[15] | LI Shibin, GUAN Bing, ZHANG Ligang, et al. Impacting factor analysis of horizontal well fracture induced stress field[J]. Coal Geology of China, 2016, 28(5): 24-28. |
[16] | 李士斌, 官兵, 张立刚, 等. 裂缝诱导应力场影响因素敏感性评价[J]. 油气藏评价与开发, 2017, 7(2): 23-30. |
[16] | LI Shibin, GUAN Bing, ZHANG Ligang, et al. The sensitivity evaluation on influence factors of fractures induced stress field[J]. Reservoir Evaluation and Development, 2017, 7(2): 23-30. |
[17] | 陈薇羽, 刘平礼, 张轶茗. 水平井交替压裂诱导应力影响研究[J]. 油气藏评价与开发, 2017, 7(6): 57-60. |
[17] | CHEN Weiyu, LIU Pingli, ZHANG Yiming. The impacts of induced stress on horizontal well alternate fracturing[J]. Reservoir Evaluation and Development, 2017, 7(6): 57-60. |
[18] | 王宇, 张景富, 刘赛, 等. 水平井多裂缝尖端应力干扰现象分析[J]. 数学的实践与认识, 2020, 50(17): 133-139. |
[18] | WANG Yu, ZHANG Jingfu, LIU Sai, et al. Analysis of stress interference phenomenon in multi-fracture tips of horizontal well[J]. Mathematics in Practice and Theory, 2020, 50(17): 133-139. |
[19] | QIAO Y, ZHANG Y, JIANG T H, et al. A fast calculation method for natural fractures activation considering stress shadow and study on the law of natural fractures activation state changes[C]// Paper SPE-207888-MS presented at the Abu Dhabi International Petroleum Exhibition & Conference, Abu Dhabi, UAE, November 2021. |
[20] | 夏阳, 韦世明, 王迪, 等. 砂页交互页岩油储层开采诱导应力场演化规律[J]. 地下空间与工程学报, 2023, 19(1): 107-116. |
[20] | XIA Yang, WEI Shiming, WANG Di, et al. Dynamic evolution of stress field during the exploitation of sand-shale interacted shale-oil reservoirs[J]. Chinese Journal of Underground Space and Engineering, 2023, 19(1): 107-116. |
[21] | 白凯华. 基于ABAQUS的低渗透储层水力压裂数值模拟研究[D]. 西安: 西安石油大学, 2019. |
[21] | BAI Kaihua. Numerical simulation of hydraulic fracturing in low permeability reservoir based on ABAQUS[D]. Xi'an: Xi'an Shiyou University, 2019. |
[22] | 许建国. 致密砂岩油气藏体积压裂缝间应力干扰分析研究[D]. 青岛: 中国石油大学(华东), 2019. |
[22] | XU Jianguo. Fractures' stress interference research of tight sandstone reservoirs' volume fracturing[D]. Qingdao: China University of Petroleum(East China), 2019. |
[23] | 闫磊, 唐建平, 刘文. 同步水力压裂增渗技术在低透气性煤层中的应用[J]. 煤, 2023, 32(8): 61-64. |
[23] | YAN Lei, TANG Jianping, LIU Wen. Application of synchronous hydraulic fracturing and increased permeability technology in low permeability coal seam in Dongzhouyao Coal Mine[J]. Coal, 2023, 32(8): 61-64. |
[24] | 孙峰, 逄铭玉, 张启汉, 等. 水平井压裂多裂缝同步扩展数值模拟[J]. 中南大学学报(自然科学版), 2017, 48(7): 1803-1808. |
[24] | SUN Feng, PANG Mingyu, ZHANG Qihan, et al. Numerical simultaneous propagation of multiple fractures in horizontal well[J]. Journal of Central South University(Science and Technology), 2017, 48(7): 1803-1808. |
[25] | 易良平, 杨长鑫, 杨兆中, 等. 天然裂缝带对深层页岩压裂裂缝扩展的影响规律[J]. 天然气工业, 2022, 42(10): 84-97. |
[25] | YI Liangping, YANG Changxin, YANG Zhaozhong, et al. Influence of natural fracture zones on the propagation of hydraulic fractures in deep shale[J]. Natural Gas Industry, 2022, 42(10): 84-97. |
[26] | 崔壮, 侯冰, 付世豪, 等. 页岩油致密储层一体化压裂裂缝穿层扩展特征[J]. 断块油气田, 2022, 29(1): 111-117. |
[26] | CUI Zhuang, HOU Bing, FU Shihao, et al. Fractures cross-layer propagation characteristics of integrated fracturing in shale oil tight reservoir[J]. Fault-Block Oil & Gas Field, 2022, 29(1): 111-117. |
[27] | 黄卓. “工厂化”压裂多裂缝应力干扰与延伸规律研究[J]. 断块油气田, 2022, 29(4): 572-576. |
[27] | HUANG Zhuo. Research on stress interference and propagation law of multi-fracture for “factory” fracturing[J]. Fault-Block Oil & Gas Field, 2022, 29(4): 572-576. |
[28] | 贺沛. 同步压裂井间裂缝模拟研究[D]. 西安: 西安石油大学, 2017. |
[28] | HE Pei. Simulation study on interwell fracture of simultaneous fracturing[D]. Xi'an: Xi'an Shiyou University, 2017. |
[29] | 刘洪, 廖如刚, 李小斌, 等. 页岩气“井工厂”不同压裂模式下裂缝复杂程度研究[J]. 天然气工业, 2018, 38(12): 70-76. |
[29] | LIU Hong, LIAO Rugang, LI Xiaobin, et al. A comparative analysis on the fracture complexity in different fracking patterns of shale gas “well factory”[J]. Natural Gas Industry, 2018, 38(12): 70-76. |
[30] | 肖佳林, 李奎东, 高东伟, 等. 涪陵焦石坝区块水平井组拉链压裂实践与认识[J]. 中国石油勘探, 2018, 23(2): 51-58. |
[30] | XIAO Jialin, LI Kuidong, GAO Dongwei, et al. Practice and cognition on zipper fracturing of horizontal well group in Jiaoshiba block, Fuling[J]. China Petroleum Exploration, 2018, 23(2): 51-58. |
/
〈 | 〉 |