油气藏评价与开发 >
2024 , Vol. 14 >Issue 3: 446 - 457
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2024.03.014
基于拓扑结构分析的断层连通性评价——以川南泸州中区深层页岩气储层多级断层为例
收稿日期: 2023-05-22
网络出版日期: 2024-07-10
基金资助
国家重点研发计划项目“页岩储层甲烷原位燃爆压裂理论与技术”(2020YFA0711800)
Fault connectivity evaluation based on topological structure analysis: A case study of multi-stage faults of deep shale gas reservoirs in central Luzhou Block, southern Sichuan
Received date: 2023-05-22
Online published: 2024-07-10
川南深层页岩气是中国天然气增储上产的重要领域。断层连通性是影响深层页岩气储层渗透性能、单井产能的重要因素,前期多针对断层形态、组合样式开展研究,鲜有断层连通性的系统量化评价。研究以川南泸州中区五峰组页岩气储层多级断层为研究对象,利用拓扑结构分析方法研究断层网络拓扑结构,并对其连通性进行定量评价,结果显示:泸州中区五峰组断层发育,断层网络分支的平均连接点数为1.12,可形成高渗通道,有利于页岩气的运移。研究区中部及南部断层产状分散度、断层长度分散度和断层密度均较大,连接型节点、分支数量多,有利于提高断层连通性,其连通性评价结果优于其他区域,具备一定的潜在高产井可能。
梁孝柏 , 鞠玮 . 基于拓扑结构分析的断层连通性评价——以川南泸州中区深层页岩气储层多级断层为例[J]. 油气藏评价与开发, 2024 , 14(3) : 446 -457 . DOI: 10.13809/j.cnki.cn32-1825/te.2024.03.014
Deep shale gas reserves in southern Sichuan represent a significant opportunity for augmenting China's natural gas reserves and production. One critical factor influencing the permeability and productivity of individual wells in these deep shale gas reservoirs is fault connectivity. Previous research has primarily focused on fault morphology and combination styles, with little systematic quantitative assessment of fault connectivity. This study targets the Wufeng Formation reservoir in the central Luzhou section of the southern Sichuan Basin, initiating a detailed analysis of the fault network structure and connectivity using multiple faults as reference points. Findings indicate that faults in the Wufeng Formation of the central Luzhou area are well-developed, with an average of 1.12 connection points per branch network. These networks potentially form highly permeable channels favorable for shale gas transport. The central and southern parts of the study area exhibit higher fault dispersion, fault length dispersion, and fault density, which contribute to a greater number of connecting nodes and branches. This enhanced connectivity is conducive to the development of high-production wells. The connectivity assessment results from these regions are superior to other studied areas, indicating notable potential for high-yield well development in the Wufeng Formation.
[1] | 刘鸿渊, 蒲萧亦, 张烈辉, 等. 中国页岩气效益开发:理论逻辑、实践逻辑与展望[J]. 天然气工业, 2023, 43(4): 177-183. |
[1] | LIU Hongyuan, PU Xiaoyi, ZHANG Liehui, et al. Beneficial development of shale gas in China: Theoretical logic, practical logic and prospect[J]. Natural Gas Industry, 2023, 43(4): 177-183. |
[2] | 张光亚, 马锋, 梁英波, 等. 全球深层油气勘探领域及理论技术进展[J]. 石油学报, 2015, 36(9): 1156-1166. |
[2] | ZHANG Guangya, MA Feng, LIANG Yingbo, et al. Domain and theory-technology progress of global deep oil & gas exploration[J]. Acta Petrolei Sinica, 2015, 36(9): 1156-1166. |
[3] | 何骁, 陈更生, 吴建发, 等. 四川盆地南部地区深层页岩气勘探开发新进展与挑战[J]. 天然气工业, 2022, 42(8): 24-34. |
[3] | HE Xiao, CHEN Gengsheng, WU Jianfa, et al. Deep shale gas exploration and development in the southern Sichuan Basin: New progress and challenges[J]. Natural Gas Industry, 2022, 42(8): 24-34. |
[4] | 李新景, 胡素云, 程克明. 北美裂缝性页岩气勘探开发的启示[J]. 石油勘探与开发, 2007, 34(4): 392-400. |
[4] | LI Xinjing, HU Suyun, CHENG Keming. Suggestions from the development of fractured shale gas in North America[J]. Petroleum Exploration and Development, 2007, 34(4): 392-400. |
[5] | 丁文龙, 许长春, 久凯, 等. 泥页岩裂缝研究进展[J]. 地球科学进展, 2011, 26(2): 135-144. |
[5] | DING Wenlong, XU Changchun, JIU Kai, et al. The research progress of shale fractures[J]. Advances in Earth Science, 2011, 26(2): 135-144. |
[6] | 聂海宽, 张金川. 页岩气储层类型和特征研究——以四川盆地及其周缘下古生界为例[J]. 石油实验地质, 2011, 33(3): 219-225. |
[6] | NIE Haikuan, ZHANG Jinchuan. Types and characteristics of shale gas reservoir:A case study of Lower Paleozoic in and around Sichuan Basin[J]. Petroleum Geology & Experiment, 2011, 33(3): 219-225. |
[7] | 久凯, 丁文龙, 李玉喜, 等. 黔北地区构造特征与下寒武统页岩气储层裂缝研究[J]. 天然气地球科学, 2012, 23(4): 797-803. |
[7] | JIU Kai, DING Wenlong, LI Yuxi, et al. Structural features in northern Guizhou area and reservoir fracture of lower Cambrian shale gas[J]. Natural Gas Geoscience, 2012, 23(4): 797-803. |
[8] | 王濡岳, 胡宗全, 龙胜祥, 等. 四川盆地上奥陶统五峰组-下志留统龙马溪组页岩储层特征与演化机制[J]. 石油与天然气地质, 2022, 43(2): 353-364. |
[8] | WANG Ruyue, HU Zongquan, LONG Shengxiang, et al. Reservoir characteristics and evolution mechanisms of the Upper Ordovician Wufeng-Lower Silurian Longmaxi shale, Sichuan Basin[J]. Oil & Gas Geology, 2022, 43(2): 353-364. |
[9] | 王濡岳, 胡宗全, 周彤, 等. 四川盆地及其周缘五峰组-龙马溪组页岩裂缝发育特征及其控储意义[J]. 石油与天然气地质, 2021, 42(6): 1295-1306. |
[9] | WANG Ruyue, HU Zongquan, ZHOU Tong, et al. Characteristics of fractures and their significance for reservoirs in Wufeng-Longmaxi shale, Sichuan Basin and its periphery[J]. Oil & Gas Geology, 2021, 42(6): 1295-1306. |
[10] | JIU K, DING W L, HUANG W H, et al. Fractures of lacustrine shale reservoirs, the Zhanhua Depression in the Bohai Bay Basin, eastern China[J]. Marine and Petroleum Geology, 2013, 48: 113-123. |
[11] | 罗群. 断裂控烃理论的概念、原理、模式与意义[J]. 石油勘探与开发, 2010, 37(3): 316-324. |
[11] | LUO Qun. Concept, principle, model and significance of the fault controlling hydrocarbon theory[J]. Petroleum Exploration and Development, 2010, 37(3): 316-324. |
[12] | 孙建军. 不同类型断-砂配置输导的油气特征及成藏控制作用[J]. 东北石油大学学报, 2013, 37(1): 57-63. |
[12] | SUN Jianjun. Transporting oil-gas characteristics with different fault-sandstone matching and its control of oil-gas accumulation[J]. Journal of Northeast Petroleum University, 2013, 37(1): 57-63. |
[13] | 柳永军, 赵弟江, 李正宇, 等. 走滑-伸展断裂叠合特征及其控藏作用[J]. 特种油气藏, 2019, 26(2): 45-51. |
[13] | LIU Yongjun, ZHAO Dijiang, LI Zhengyu, et al. The superposition patterns of strike-slip-extension faults and its effects on hydrocarbon accumulation[J]. Special Oil and Gas Reservoirs, 2019, 26(2): 45-51. |
[14] | 兰凯, 董成林, 李光泉, 等. 威荣深层页岩气田水平段安全提速技术对策[J]. 断块油气田, 2023, 30(3): 505-510. |
[14] | LAN Kai, DONG Chenglin, LI Guangquan, et al. Technical strategy to enhance drilling speed safely of horizontal section for deep shale gas field in Weiyuan-Rongchang Block[J]. Fault-Block Oil & Gas Field, 2023, 30(3): 505-510. |
[15] | 孙东, 杨丽莎, 王宏斌, 等. 塔里木盆地哈拉哈塘地区走滑断裂体系对奥陶系海相碳酸盐岩储层的控制作用[J]. 天然气地球科学, 2015, 26(增刊1): 80-87. |
[15] | SUN Dong, YANG Lisha, WANG Hongbin, et al. Strike-slip fault system in Halahatang area of Tarim Basin and its control on reservoirs of Ordovician marine carbonate rock[J]. Natural Gas Geoscience, 2015, 26(suppl. 1): 80-87. |
[16] | 何羽, 任丽, 邓楠. 鄂尔多斯盆地南部ywb地区中生界小断层特征及其油气勘探意义[J]. 西北地质, 2020, 53(1): 189-194. |
[16] | HE Yu, REN Li, DENG Nan. The characteristics of the small faults in Mesozoic Strata of ywb area in the South of Ordos Basin and its significance for oil and gas exploration[J]. Northwestern Geology, 2020, 53(1): 189-194. |
[17] | 陈永波, 潘建国, 张寒, 等. 准噶尔盆地玛湖凹陷斜坡区断裂演化特征及对三叠系百口泉组成藏意义[J]. 天然气地球科学, 2015, 26(增刊1): 11-24. |
[17] | CHEN Yongbo, PAN Jianguo, ZHANG Han, et al. Characteristics of fault evolution in Mahu slope area of Junggar Basin and its implications to the reservoir in the lower Triassic Baikouquan Formation[J]. Natural Gas Geoscience, 2015, 26(suppl. 1): 11-24. |
[18] | 康晏, 邹灵, 刘志勇, 等. 青城凸起中生界内幕断层及油气运聚特征[J]. 油气地质与采收率, 2014, 21(6): 45-48. |
[18] | KANG Yan, ZOU Ling, LIU Zhiyong, et al. Faulted structure and its effect on oil-gas reservoir forming in Qingcheng arch[J]. Petroleum Geology and Recovery Efficiency, 2014, 21(6): 45-48. |
[19] | 杨同振. 东营凹陷北带深层油气输导体系特征及控藏作用[D]. 青岛: 中国石油大学(华东), 2014. |
[19] | YANG Tongzhen. Characteristics of hydrocarbon carrier and role in deep reservoir-formation in the north zone of Dongying Sag[D]. Qingdao: China University of Petroleum(East China), 2014. |
[20] | 李玮, 孙文峰, 唐鹏, 等. 基于拓扑结构的岩石裂缝网络表征方法[J]. 天然气工业, 2017, 37(6): 22-27. |
[20] | LI Wei, SUN Wenfeng, TANG Peng, et al. A method for rock fracture network characterization based on topological structure[J]. Natural Gas Industry, 2017, 37(6): 22-27. |
[21] | KIM I, PARK S I, KWON S, et al. Evolution of fracture networks and connectivity during fault-bend folding: Insights from the Sinon Anticline in the southwestern Hongseong-Imjingang Belt, Korea[J]. Journal of Structural Geology, 2021: 5-17. |
[22] | 赵欢. 裂缝性致密砂岩储层连通性及压裂机理研究[D]. 大庆: 东北石油大学, 2020. |
[22] | ZHAO Huan. Study on the connectivity and the fracture initiation mechanism of fractured tight sandstone reservoir[D]. Daqing: Northeast Petroleum University, 2020. |
[23] | 王迪, 吴智平, 宋国奇, 等. 断裂网络体系拓扑结构与油气运移的关系——以临南洼陷为例[J]. 中国矿业大学学报, 2021, 50(1): 154-162. |
[23] | WANG Di, WU Zhiping, SONG Guoqi, et al. Topological structure of fault network system and its relationship with hydrocarbon migration: Taking Linnan Sag as an example[J]. Journal of China University of Mining & Technology, 2021, 50(1): 154-162. |
[24] | 王希贤. EBANO油田Ksf和Kan层裂缝特征及连通性分析[J]. 油气地质与采收率, 2021, 28(2): 135-142. |
[24] | WANG Xixian. Fracture characteristics and connectivity analysis of Ksf and Kan formations in EBANO oilfield[J]. Petroleum Geology And Recovery Efficiency, 2021, 28(2): 135-142. |
[25] | 南佳琛, 戴鸿鸣. 气相色谱指纹技术在哈拉哈塘油田跃满区块跃满2缝洞系统中油藏连通性的应用[J]. 化工管理, 2019, 26(29): 219-220. |
[25] | NAN Jiachen, DAI Hongming. Application of gas chromatography fingerprint technology in the connectivity of Yueman 2 fracture-cave system in Yueman Block, Halahatang Oilfield[J]. Chemical Engineering Management, 2019, 26(29): 219-220. |
[26] | GHOSH K, MITRA S. Structural controls of fracture orientations, intensity, and connectivity, Teton anticline, Sawtooth Range, Montana[J]. AAPG Bulletin, 2011, 93(8): 995-1014. |
[27] | RUBINO J G, GUARRACINO L, MUELLER T M. Do seismic waves sense fracture connectivity?[J]. Geophysical Research Letters, 2013, 40(4): 692-696. |
[28] | 闫建平, 罗静超, 石学文, 等. 川南泸州地区奥陶系五峰组—志留系龙马溪组页岩裂缝发育模式及意义[J]. 岩性油气藏, 2022, 34(6): 60-71. |
[28] | YAN Jianping, LUO Jingchao, SHI Xuewen, et al. Fracture development models and significance of Ordovician WufengSilurian Longmaxi shale in Luzhou area, southern Sichuan Basin[J]. Lithologic Reservoirs, 2022, 34(6): 60-71. |
[29] | 彭井宏, 周军, 胡承强, 等. 热力耦合作用下地下盐岩储气库注采运行稳定性研究[J]. 断块油气田, 2023, 30(5): 858-867. |
[29] | PENG Jinghong, ZHOU Jun, HU Chengqiang, et al. Study on the injection-production stability of underground salt rock gas storage under thermo-mechanical coupling[J]. Fault-Block Oil & Gas Field, 2023, 30(5): 858-867. |
[30] | 董敏, 郭伟, 张林炎, 等. 川南泸州地区五峰组—龙马溪组古构造应力场及裂缝特征[J]. 岩性油气藏, 2022, 34(1): 43-51. |
[30] | DONG Min, GUO Wei, ZHANG Linyan, et al. Characteristics of paleotectonic stress field and fractures of Wufeng-Longmaxi Formation in Luzhou area, southern Sichuan Basin[J]. Lithologic Reservoirs, 2022, 34(1): 43-51. |
[31] | 张成林, 赵圣贤, 张鉴, 等. 川南地区深层页岩气富集条件差异分析与启示[J]. 天然气地球科学, 2021, 32(2): 248-261. |
[31] | ZHANG Chenglin, ZHAO Shengxian, ZHANG Jian, et al. Analysis and enlightenment of the difference of enrichment conditions for deep shale gas in southern Sichuan Basin[J]. Natural Gas Geoscience, 2021, 32(2): 248-261. |
[32] | 张坦. 川南地区断裂特征与构造样式分析[D]. 北京: 中国地质大学(北京), 2020. |
[32] | ZHANG Tan. Fracture characteristics and construal styles in southern Sichuan area[D]. Beijing: China University of Geosciences(Beijing), 2020. |
[33] | 李楠, 洪海涛, 李国辉, 等. 四川盆地高陡构造区凉高山组页岩油气地质特征[J]. 天然气勘探与开发, 2022, 45(4): 86-95. |
[33] | LI Nan, HONG Haitao, LI Guohui, et al. Geological characteristics of shale oil and gas in Liangshan Formation, high and steep structure area, Sichuan Basin[J]. Natural Gas Exploration and Development, 2022, 45(4): 86-95. |
[34] | SANDERSON D J, NIXON C W. The use of topology in fracture network characterization[J]. Journal of Structural Geology, 2015, 72: 55-66. |
[35] | 李玮, 赵欢, 李思琪, 等. 页岩裂缝网络的几何特征二维表征及连通性分析[J]. 石油钻探技术, 2017, 45(6): 70-76. |
[35] | LI Wei, ZHAO Huan, LI Siqi, et al. 2D characterization of geometric features and connectivity of fracture networks in shale formations[J]. Petroleum Drilling Techniques, 2017, 45(6): 70-76. |
[36] | ANDRESEN C A, EHANSEN A, GOC R E, et al. Topology of Fracture Networks[J]. Frontiers in Physics, 2013, 1(7): 1-5. |
[37] | MANZOCCHI T. The connectivity of two-dimensional networks of spatially correlated fractures[J]. Water Resources Research, 2002, 314: 109-113. |
[38] | ERZSéBET R, LáSZLó B A. Hierarchical organization in complex networks[J]. Physical Review E, 2003, 67: 1-7. |
[39] | DUFFY O B, NIXON C W, BELL R E, et al. The topology of evolving rift fault networks: Single-phase vs multi-phase rifts[J]. Journal of Structural Geology, 2017, 96: 192-202. |
[40] | SANDERSON D J, DAVID C P, NIXON C W, et al. Graph theory and the analysis of fracture networks[J]. Journal of Structural Geology, 2018: 156-164. |
[41] | 巩磊, 程宇琪, 高帅, 等. 库车东部下侏罗统致密砂岩储层裂缝连通性表征及其主控因素[J]. 地球科学, 2023, 48(7): 2475-2488. |
[41] | GONG Lei, CHENG Yuqi, GAO Shuai, et al. Fracture connectivity characterization and its controlling factors in Lower Jurassic tight sandstone reservoirs of eastern Kuqa Foreland Basin[J]. Earth Science, 2023, 48(7): 2475-2488. |
[42] | 李飞, 刘国生, 周庆卫, 等. 分形理论在断裂与矿产关系研究中的应用[J]. 合肥工业大学学报(自然科学版), 2016, 39(5): 701-706. |
[42] | LI Fei, LIU Guosheng, ZHOU Qingwei, et al. Application of fractal theory to study the relationship between fracture and mineral resources[J]. Journal of Hefei University of Technology (Natural Science Edition), 2016, 39(5): 701-706. |
[43] | JAFARI A, BABADAGLI T. Estimation of equivalent fracture network permeability using fractal and statistical network properties[J]. Journal of Petroleum Science and Engineering, 2012, 92: 110-123. |
[44] | MIAO T J, YU B M, DUAN Y G, et al. A fractal analysis of permeability for fractured rocks[J]. International Journal of Heat and Mass Transfer, 2015, 81: 75-80. |
[45] | ZHU J T, CHENG Y Y. Effective permeability of fractal fracture rocks: Significance of turbulent flow and fractal scaling[J]. International Journal of Heat and Mass Transfer, 2018, 116: 549-556. |
[46] | LAHIRI S. Estimating effective permeability using connectivity and branch length distribution of fracture network[J]. Journal of Structural Geology, 2021, 146: 5-14. |
[47] | 谢瑞, 张尚锋, 周林, 等. 川东地区侏罗系自流井组大安寨段致密储层油气成藏特征[J]. 岩性油气藏, 2023, 35(1): 108-119. |
[47] | XIE Rui, ZHANG Shangfeng, ZHOU Lin, et al. Hydrocarbon accumulation characteristics of tight reservoirs of Da'anzhai member of Jurassic Ziliujing Formation in eastern Sichuan Basin[J]. Lithologic Reservoirs, 2023, 35(1): 108-119. |
[48] | GARTRELL A, ZHANG Y H, LISK M, et al. Fault intersections as critical hydrocarbon leakage zones: Integrated field study and numerical modelling of an example from the Timor Sea, Australia[J]. Marine & Petroleum Geology, 2004, 21(9): 1165-1179. |
[49] | 董大忠, 梁峰, 管全中, 等. 四川盆地五峰组—龙马溪组页岩气优质储层发育模式及识别评价技术[J]. 天然气工业, 2022, 42(8): 96-111. |
[49] | DONG Dazhong, LIANG Feng, GUAN Quanzhong, et al. Development model and identification evaluation technology of Wufeng-Longmaxi Formation quality shale gas reservoirs in the Sichuan Basin[J]. Natural Gas Industry, 2022, 42(8): 96-111. |
/
〈 | 〉 |