综合应用

不同压裂规模下煤储层缝网形态对比研究——以延川南煤层气田为例

  • 刘晓
展开
  • 1.中国石化临汾煤层气分公司,山西 临汾 041000
    2.中国石化深层煤层气勘探开发重点实验室,江苏 南京 210094
刘晓(1982—),男,硕士,高级工程师,从事非常规煤层气勘探开发工作。地址:山西省临汾市尧都区华州路九星佳苑临汾煤层气分公司,邮政编码:041000。E-mail: 47186025@qq.com

收稿日期: 2024-02-22

  网络出版日期: 2024-07-10

基金资助

国家自然科学基金面上项目“深部煤层气赋存态调整分配及释放产出机制”(42272195);中国石化科技项目“华东探区深部煤层气富集规律与有效开发技术”(P23205)

Comparison of seam network morphology in coal reservoirs under different fracturing scales: A case of Yanchuannan CBM Gas Field

  • Xiao LIU
Expand
  • 1. Sinopec Linfen Coalbed Methane Company, Linfen, Shanxi 041000, China
    2. Sinopec Key Laboratory of Deep Coalbed Methane Exploration and Development, Nanjing, Jiangsu 210094, China

Received date: 2024-02-22

  Online published: 2024-07-10

摘要

以大砂量、大液量为特点的储层改造技术推动深层煤层气开发取得突破,煤层气增储上产保持着良好势头。为探索深部煤储层水力压裂过程中裂缝扩展形态,在鄂尔多斯盆地延川南煤层气田开展不同压裂规模煤储层改造的矿场试验,对比分析压后裂缝扩展形态和储层改造面积,查明了不同类型气井、不同施工规模下裂缝形态的差异性,分析投产后的产气效果,形成了适合研究区深部煤储层改造工艺。结果表明:①低效老井多次中等规模压裂、新井多次大规模压裂和新井单次超大规模压裂均能有效延伸裂缝长度、扩大储层改造面积,但缝网形态存在较大差异。受排采过程和诱导应力影响,低效老井经多次中等规模压裂后,形成主裂缝延伸、次裂缝扩展的“玫瑰花”型缝网;新井压裂改造后形成的缝网形态呈“长椭圆”型,但单次超大规模的液体使用效率更高,相同规模下裂缝半长和改造面积更大。②随压裂次数增加,裂缝半长和改造面积均呈对数增加的趋势,且有明显的递减效应,试采证实2次大规模压裂施工具有良好的经济性,研究结果为井网部署提供了依据。以柴油为动力来源的压裂设备较难适应提升规模后的连续施工,电驱动压裂装置是未来整装煤层气田开发的可靠途径。

本文引用格式

刘晓 . 不同压裂规模下煤储层缝网形态对比研究——以延川南煤层气田为例[J]. 油气藏评价与开发, 2024 , 14(3) : 510 -518 . DOI: 10.13809/j.cnki.cn32-1825/te.2024.03.021

Abstract

Significant advancements in deep Coal Bed Methane(CBM)development have been achieved through the adoption of reservoir reforming technology, characterized by the utilization of large sand volumes and large fracturing fluid volumes in Yanchuannan CBM Gas Field of Ordos Basin. This study conducts field tests on coal reservoirs with varying fracturing scales to explore the patterns of fracture expansion post-hydraulic fracturing and assesses the resultant reservoir reform areas. The analysis identifies distinct fracture patterns across different types of gas wells and fracturing scales, examines the impacts on gas production post-commissioning, and develops fracturing technology tailored to Yanchuannan CBM Gas Field. Multiple moderate-scale fracturing interventions in inefficient old wells and large-scale fracturing in new wells effectively extend fracture lengths and expand the area of reservoir reconstruction. However, the morphology of the resulting fracture networks varies significantly. Inefficient old wells subjected to multiple medium-scale fracturing develop a “rose-shaped” fracture network with primary and secondary fractures, whereas new wells exhibit a “long elliptical” fracture pattern. Notably, the use of a single ultra-large-scale fracturing fluid achieves greater efficiency, producing longer half-length fractures and larger renovation areas under the same scale. The fracture half-length and renovation area demonstrate a logarithmic increase with the frequency of fracturing, significantly enhancing the efficiency. Economic evaluations of trial production confirm that two large-scale fracturing operations are economically viable, providing a foundation for future well network deployment. Fracturing equipment powered by diesel struggles to adapt to continuous operations at scaled-up levels, suggesting that electric-driven fracturing devices present a reliable alternative for the sustainable development of integrated CBM gas fields. These insights not only enhance understanding of fracture dynamics in deep CBM reservoirs but also guide the optimization of fracturing strategies and equipment choices for future developments.

参考文献

[1] 门相勇, 娄钰, 王一兵, 等. 中国煤层气产业“十三五”以来发展成效与建议[J]. 天然气工业, 2022, 42(6): 173-178.
[1] MEN Xiangyong, LOU Yu, WANG Yibing, et al. Development achievements of China’s CBM industry since the 13th Five-Year Plan and suggestions[J]. Natural Gas Industry, 2022, 42(6): 173-178.
[2] 聂志宏, 时小松, 孙伟, 等. 大宁-吉县区块深层煤层气生产特征与开发技术对策[J]. 煤田地质与勘探, 2022, 50(3): 193-200.
[2] NIE Zhihong, SHI Xiaosong, SUN Wei, et al. Production characteristics of deep coalbed methane gas reservoirs in Daning-Jixian Block and its development technology countermeasures[J]. Coal Geology & Exploration, 2022, 50 (3): 193-200.
[3] 郭绪杰, 支东明, 毛新军, 等. 准噶尔盆地煤岩气的勘探发现及意义[J]. 中国石油勘探, 2021, 26(6): 38-49.
[3] GUO Xujie, ZHI Dongming, MAO Xinjun, et al. Discovery and significance of coal measure gas in Junggar Basin[J]. China Petroleum Exploration, 2021, 26(6): 38-49.
[4] 姚红生, 陈贞龙, 何希鹏, 等. 深部煤层气“有效支撑”理念及创新实践——以鄂尔多斯盆地延川南煤层气田为例[J]. 天然气工业, 2022, 42(6): 97-106.
[4] YAO Hongsheng, CHEN Zhenlong, HE Xipeng, et al. “Effective support” concept and innovative practice of deep CBM in South Yanchuan Gas Field of the Ordos Basin[J]. Natural Gas Industry, 2022, 42(6): 97-106.
[5] 徐凤银, 王成旺, 熊先钺, 等. 深部(层)煤层气层成藏模式与关键技术对策——以鄂尔多斯盆地东缘为例[J]. 中国海上油气, 2022, 34(4): 30-42.
[5] XU Fengyin, WANG Chengwang, XIONG Xianyue, et al. Deep(layer) caolbed methane reservoir forming modes and key technical countermeasures: Taking the eastern margin of Ordos Basin as an example[J]. China Offshore Oil and Gas, 2022, 34(4): 30-42.
[6] 马新华. 非常规天然气“极限动用”开发理论与实践[J]. 石油勘探与开发, 2021, 48(2): 326-336.
[6] MA Xinhua. “Extreme utilization” development theory of unconventional natural gas[J]. Petroleum Exploration and Development, 2021, 48(2): 326-336.
[7] 胡秋嘉, 张聪, 贾慧敏, 等. 沁水盆地南部郑庄区块中北部煤层气直井增产新技术研究与应用[J]. 煤炭学报, 2024, 49(3): 1518-1529.
[7] HU Qiujia, ZHANG Cong, JIA Huimin, et al. Research and application of a new stimulation technology for deep coalbed methane vertical wells in central and Northern Zhengzhuang block, southern Qinshui Basin[J]. Journal of China Coal Society, 2024, 49(3): 1518-1529.
[8] 张聪, 李梦溪, 胡秋嘉, 等. 沁水盆地南部中深部煤层气储层特征及开发技术对策[J]. 煤田地质与勘探, 2024, 52(2): 122-133.
[8] ZHANG Cong, LI Mengxi, HU Qiujia, et al. Moderately deep coalbed methane reservoirs in the southern Qinshui Basin: Characteristics and technical strategies for exploitation[J]. Coal Geology & Exploration, 2024, 52(2): 122-133.
[9] 张建国, 刘忠, 姚红星, 等. 沁水煤层气田郑庄区块二次压裂增产技术研究[J]. 煤炭科学技术, 2016, 44(5): 59-63.
[9] ZHANG Jianguo, LIU Zhong, YAO Hongxing, et al. Study on production increased technology with secondary hydraulic fracturing in Zhengzhuang Block of Qinshui Coalbed Methane Field[J]. Coal Science and Technology, 2016, 44(5): 59-63.
[10] 曹超. 煤层气重复压裂技术在沁水盆地南部的应用[J]. 中国煤层气, 2017, 14(4): 15-18.
[10] CAO Chao. Application of CBM repeated fracturing technology in Southern Qinshui Basin[J]. China Coalbed Methane, 2017, 14(4): 15-18.
[11] 李乐忠. 低煤阶薄互层煤层气的成藏特征及开发技术——以澳大利亚苏拉特盆地为例[J]. 中国煤层气, 2016, 13(6): 15-19.
[11] LI Lezhong. Reservoir formation characteristics and development technology for low rank CBM with thin interbed—Taking Surat Basin in Australia as an example[J]. China Coalbed Methane, 2016, 13(6): 15-19.
[12] 郑雪琳. 层间弱面影响下煤层水力裂缝扩展规律及煤岩裂缝导流能力研究[D]. 重庆: 重庆大学, 2021.
[12] ZHENG Xuelin. Study on hydraulic fracture propagation law of coal considering soft interlayer and coal fracture conductivity[D]. Chongqing: Chongqing University, 2021.
[13] 薛海飞, 朱光辉, 张健, 等. 深部煤层气水力波及压裂工艺研究及应用[J]. 煤炭技术, 2019, 38(5): 81-84.
[13] XUE Haifei, ZHU Guanghui, ZHANG Jian, et al. Research and application of hydraulic networks fracturing technology in deep coalbed methane[J]. Coal Technology, 2019, 38(5): 81-84.
[14] 洪扬, 吴涛. 玛北油田三叠系低渗砂砾岩储层压裂改造工艺技术[J]. 石油地质与工程, 2022, 36(3): 104-108.
[14] HONG Yang, WU Tao. Fracturing improvement technology of Triassic low peameability conglomerate reservoir in Mabei oilfield[J]. Petroleum Geology & Engineering, 2022, 36(3): 104-108.
[15] 姚红生, 杨松, 刘晓, 等. 低效煤层气井多次压裂增效开发技术研究[J]. 煤炭科学技术, 2022, 50(9): 121-129.
[15] YAO Hongsheng, YANG Song, LIU Xiao, et al. Research on efficiency-enhancing development technology of multiple fracturing in low-efficiency CBM wells[J]. Coal Science and Technology, 2022, 50(9): 121-129.
[16] 雷群, 胥云, 才博, 等. 页岩油气水平井压裂技术进展与展望[J]. 石油勘探与开发, 2022, 49(1): 166-172.
[16] LEI Qun, XU Yun, CAI Bo, et al. Progress and prospects of horizontal well fracturing technology for shale oil and gas reservoirs[J]. Petroleum Exploration and Development, 2022, 49(1): 166-172.
[17] 胥云, 雷群, 陈铭, 等. 体积改造技术理论研究进展与发展方向[J]. 石油勘探与开发, 2018, 45(5): 874-887.
[17] XU Yun, LEI Qun, CHEN Ming, et al. Progress and development of volume stimulation techniques[J]. Petroleum Exploration and Development, 2018, 45(5): 874-887.
[18] 刘小明. 大庆油田致密油水平井体积改造技术发展与建议[J]. 石油地质与工程, 2023, 37(4): 108-112.
[18] LIU Xiaoming. Development and suggestions for volume transformation of tight oil by horizontal wells in Daqing Oilfield[J]. Petroleum Geology & Engineering, 2023, 37(4): 108-112.
[19] PERSON C M, GRIFFIN L, WRIGHT C, et al. Breaking up is hard to do: Creating hydraulic fracture complexity in the Bakken central basin[C]// Paper SPE-163827-MS presented at the SPE Hydraulic Fracturing Technology Conference, The Woodlands, Texas, USA, February 2013.
[20] 王世禄. 松辽盆地古龙页岩油水平井压裂施工参数优化[J]. 石油地质与工程, 2023, 37(5): 94-99.
[20] WANG Shilu. Optimization of fracturing construction parameters for Gulong shale oil with horizontal wells in Songliao Basin[J]. Petroleum Geology & Engineering, 2023, 37(5): 94-99.
[21] FISHER M K, HEINZE J R, HARRIS C D, et al. Optimizing horizontal completion techniques in the Barnett shale using microseismic fracture mapping[J]. Journal of Petroleum Technology, 2005, 57(3): 41-42.
[22] 雷群, 管保山, 才博, 等. 储集层改造技术进展及发展方向[J]. 石油勘探与开发, 2019, 46(3): 580-587.
[22] LEI Qun, GUAN Baoshan, CAI Bo, et al. Technological progress and prospects of reservoir stimulation[J]. Petroleum Exploration and Development, 2019, 46(3): 580-587.
[23] 沈骋, 郭兴午, 陈马林, 等. 深层页岩气水平井储层压裂改造技术[J]. 天然气工业, 2019, 39(10): 68-75.
[23] SHEN Cheng, GUO Xingwu, CHEN Malin, et al. Horizontal well fracturing stimulation technology for deep shale gas reservoirs[J]. Natural Gas Industry, 2019, 39(10): 68-75.
[24] 杨松, 刘晓, 申建, 等. 延川南气田近薄层煤层气开发实践及其示范意义[J]. 天然气工业, 2023, 43(8): 90-97.
[24] YANG Song, LIU Xiao, SHEN Jian, et al. Development practice of near-thin bed CBM in the Yanchuannan gas field and its demonstration significance[J]. Natural Gas Industry, 2023, 43(8): 90-97.
[25] 姚红生, 陈贞龙, 郭涛, 等. 延川南深部煤层气地质工程一体化压裂增产实践[J]. 油气藏评价与开发, 2021, 11(3): 291-296.
[25] YAO Hongsheng, CHEN Zhenlong, GUO Tao, et al. Stimulation practice of geology-engineering integration fracturing for deep CBM in Yanchuannan Field[J]. Reservoir Evaluation and Development, 2021, 11(3): 291-296.
[26] 曹运兴, 石玢, 田林, 等. 低渗低压煤层水平井密集多簇压裂高效开发技术及应用[J]. 煤炭学报, 2020, 45(10): 3512-3521.
[26] CAO Yunxing, SHI Bin, TIAN Lin, et al. Development and application of dense multi-cluster fracturing in horizontal wells for low permeability and low pressure coal reservoir[J]. Journal of China Coal Society, 2020, 45(10): 3512-3521.
[27] 徐凤银, 闫霞, 李曙光, 等. 鄂尔多斯盆地东缘深部(层)煤层气勘探开发理论技术难点与对策[J]. 煤田地质与勘探, 2023, 51(1): 115-130.
[27] XU Fengyin, YAN Xia, LI Shuguang, et al. Theoretical and technological difficulties and countermeasures of deep CBM exploration and development in the eastern edge of Ordos Basin[J]. Coal Geology & Exploration, 2023, 51(1): 115-130.
[28] 余琪祥, 罗宇, 曹倩, 等. 准噶尔盆地东北缘深层煤层气勘探前景[J]. 天然气地球科学, 2023, 34(5): 888-899.
[28] YU Qixiang, LUO Yu, CAO Qian, et al. Exploration prospect of deep coalbed methane in the northeastern margin of Junggar Basin[J]. Natural Gas Geoscience, 2023, 34(5): 888-899.
文章导航

/