专家论坛

稠油开发技术进展及新分类标准建立与应用实践——以胜利油田稠油开发为例

  • 束青林 ,
  • 魏超平 ,
  • 于田田 ,
  • 计秉玉 ,
  • 张仲平 ,
  • 郑万刚
展开
  • 1.中国石化胜利油田分公司,山东 东营 257000
    2.中国石化胜利油田分公司勘探开发研究院,山东 东营 257000
    3.中国石化胜利油田分公司石油工程技术研究院,山东 东营 257000
    4.中国石化石油勘探开发研究院,北京 102206
    5.山东省稠油开采技术重点实验室,山东 东营 257000
    6.中国石油大学(北京)非常规油气科学技术研究院,北京 102249
束青林(1966—),男,博士,正高级工程师,从事油田开发地质及提高采收率研究与管理工作。地址:山东省东营市东营区济南路258号,邮政编码:257000。E-mail: shuqinglin.slyt@sinopec.com

收稿日期: 2023-05-17

  网络出版日期: 2024-09-10

基金资助

国家重点研发计划项目“稠油化学复合冷采基础研究与工业示范”(2018YFA0702400);山东省泰山产业创新项目“生物化学复合提高难采稠油采收率技术创新及产业化”

Development technology progress of heavy oil and establishment and application practice of new classification standard: A case study of development of heavy oil in Shengli Oilfield

  • Qinglin SHU ,
  • Chaoping WEI ,
  • Tiantian YU ,
  • Bingyu JI ,
  • Zhongping ZHANG ,
  • Wangang ZHENG
Expand
  • 1. Sinopec Shengli Oilfield Company, Dongying, Shandong 257000, China
    2. Research Institute of Exploration and Development, Sinopec Shengli Oilfield Company, Dongying, Shandong 257000, China
    3. Research Institute of Petroleum Engineering, Sinopec Shengli Oilfield Company, Dongying, Shandong 257000, China
    4. Sinopec Petroleum Exploration and Production Research Institute, Beijing 102206, China
    5. Shandong Key Laboratory of Heavy Oil Production Technology, Dongying, Shandong 257000, China
    6. Unconventional Petroleum Research Institute, China University of Petroleum(Beijing), Beijing 102249, China

Received date: 2023-05-17

  Online published: 2024-09-10

摘要

稠油油藏是一种重要的战略资源,对保障国家能源安全起到重要的作用。国内外稠油开发主要有蒸汽吞吐、蒸汽驱、驱泄复合(SAGD)、火烧驱油4项技术,受技术适应性、成本高及对环境不友好的影响,其推广和运用存在一定局限性。胜利油田根据自身油藏特点,形成了薄层水平井、热化学复合和化学降黏3项新技术,拓展了开发技术界限,使稠油油藏开发的有效厚度界限低至2 m、油藏埋深为2 000 m、储层渗透率界限低至100×10-3 μm2。根据各项技术特点和矿场应用效果,建立了以技术适应性为基础的稠油新分类标准,把稠油油藏分为5大类,指导矿场稠油开发技术方向的选择。结合目前技术发展方向和新的形势要求,指出“多元热复合”“非热力开发”“纳米材料应用”将是稠油开发技术3个趋势。

本文引用格式

束青林 , 魏超平 , 于田田 , 计秉玉 , 张仲平 , 郑万刚 . 稠油开发技术进展及新分类标准建立与应用实践——以胜利油田稠油开发为例[J]. 油气藏评价与开发, 2024 , 14(4) : 529 -540 . DOI: 10.13809/j.cnki.cn32-1825/te.2024.04.002

Abstract

Heavy oil reservoirs are crucial strategic resources that play a significant role in ensuring national energy security. The development of heavy oil both domestically and internationally primarily involves four technologies: steam huff and puff, steam flooding, Steam Assisted Gravity Drainage(SAGD) and fire flooding. However, due to issues such as technical adaptability, high costs and environmental concerns, the promotion and application of these technologies face certain limitations. At Shengli Oilfield, three innovative technologies have been developed to overcome these limitations: thin-layer horizontal wells, thermochemical composites and chemical viscosity reduction. These advancements have pushed the boundaries of development technology, reducing the effective thickness limit of heavy oil reservoirs to two meters, the depth limit to 2 000 meters, and the permeability limit to 100×10-3 μm2. Based on the technical characteristics and field application effects, a new classification standard of heavy oil based on technical adaptability has been established. This standard divides heavy oil reservoirs into five categories to guide the selection of development technology at the field level. Looking forward, it is projected that “multi-thermal composites”, “non-thermal development” and “nano-materials” will be the three main trends in heavy oil development technology.

参考文献

[1] 马锋, 张光亚, 王红军, 等. 全球重油与油砂资源潜力、分布与勘探方向[J]. 吉林大学学报(地球科学版), 2015, 45(4): 1042-1051.
[1] MA Feng, ZHANG Guangya, WANG Hongjun, et al. Potential, distribution and exploration direction of global heavy oil and oil sand resources[J]. Journal of Jilin University(Earth Science Edition), 2015, 45(4): 1042-1051.
[2] 于连东. 世界稠油资源的分布及其开采技术的现状与展望[J]. 特种油气藏, 2001, 8(2): 98-103.
[2] YU Liandong. The distribution of heavy oil resources in the world and the current status and prospects of their extraction technologies[J]. Special Oil & Gas Reservoirs, 2001, 8(2): 98-103.
[3] 武毅. 辽河油田开发技术思考与建议[J]. 特种油气藏, 2018, 25(6): 96-100.
[3] WU Yi. Technical considerations and suggestions for the development of Liaohe Oilfield[J]. Special Oil & Gas Reservoirs, 2018, 25(6): 96-100.
[4] 熊彪, 张荷, 李浩哲, 等. 稠油开采技术及展望[J]. 化学工程与装备, 2016(2): 169-171.
[4] XIONG Biao, ZHANG He, LI Haozhe, et al. Heavy oil recovery technology and prospects[J]. Chemical Engineering & Equipment, 2016(2): 169-171.
[5] 蒋琪, 游红娟, 潘竟军, 等. 稠油开采技术现状与发展方向初步探讨[J]. 特种油气藏, 2020, 27(6): 30-39.
[5] JIANG Qi, YOU Hongjuan, PAN Jingjun, et al. Preliminary discussion on current status and development direction of heavy oil recovery technologies[J]. Special Oil & Gas Reservoirs, 2020, 27(6): 30-39.
[6] 袁士宝, 孙健, 宫宇宁, 等. 多层稠油油藏对向火驱开采方法研究[J]. 非常规油气, 2023, 10(2): 26-32.
[6] YUAN Shibao, SUN Jian, GONG Yuning, et al. Study on mining method of opposite fire flooding in multi-layer heavy oil reservoir[J]. Unconventional Oil & Gas, 2023, 10(2): 26-32.
[7] 黄琴, 蔡晖, 桑丹, 等. 海上稠油油田水平井多轮蒸汽吞吐生产规律研究[J]. 非常规油气, 2023, 10(2): 76-79.
[7] HUANG Qin, CAI Hui, SANG Dan, et al. Study on development law of horizontal well multiple cyclic steam stimulation for offshore heavy oilfields[J]. Unconventional Oil & Gas, 2023, 10(2): 76-79.
[8] 武毅, 李铁军, 赵洪岩. 辽河油田高效开发[M]. 北京: 石油工业出版社, 2017.
[8] WU Yi, LI Tiejun, ZHAO Hongyan. Efficient development of Liaohe Oilfield[M]. Beijing: Petroleum Industry Press, 2017.
[9] 许鑫, 刘永建, 尚策, 等. 稠油油藏蒸汽驱提高热利用率研究[J]. 特种油气藏, 2019, 26(2): 112-116.
[9] XU Xin, LIU Yongjian, SHANG Ce, et al. Thermal utilization enhancement of steam-flooding in heavy oil reservoir[J]. Special Oil & Gas Reservoirs, 2019, 26(2): 112-116.
[10] 安洁. 胜利稠油开发技术及未来发展[J]. 中国石油和化工标准与质量, 2020, 40(17): 202-203.
[10] AN Jie. Shengli heavy oil development technology and future development[J]. China Petroleum and Chemical Standards and Quality, 2020, 40(17): 202-203.
[11] 户昶昊. 中深层稠油油藏蒸汽驱技术研究进展与发展方向[J]. 特种油气藏, 2020, 27(6): 54-59.
[11] HU Changhao. Research progress and development direction of steam flooding technology for medium to deep heavy oil reservoirs[J]. Special Oil & Gas Reservoirs, 2020, 27(6): 54-59.
[12] 何万军, 鲍海娟, 马鸿, 等. 超稠油油藏小井距蒸汽吞吐转蒸汽驱先导试验[J]. 特种油气藏, 2014, 21(4): 130-133.
[12] HE Wanjun, BAO Haijuan, MA Hong, et al. Pilot of steam drive after huff and puff for ultra-Heavy oil reservoir with small well spacing[J]. Special Oil & Gas Reservoirs, 2014, 21(4): 130-133.
[13] 李浩哲, 熊彪, 张荷, 等. 国外稠油油藏单井SAGD开发技术综述[J]. 天然气与石油, 2017, 35(1): 84-88.
[13] LI Haozhe, XIONG Biao, ZHANG He, et al. Technical review on the development of single-well SAGD in foreign heavy oil reservoirs[J]. Natural Gas and Oil, 2017, 35(1): 84-88.
[14] 李苒, 陈掌星, 吴克柳, 等. 特超稠油SAGD高效开发技术研究综述[J]. 中国科学(技术科学), 2020, 50(6): 729-741.
[14] LI Ran, CHEN Zhangxing, WU Keliu, et al. Review on the effective recovery of SAGD production for extra and super heavy oil reservoirs[J]. SCIENTIA SINICA Technologica, 2020, 50(6): 729-741.
[15] 杨钊. 稠油油藏火烧油层采油技术原理及其应用[M]. 北京: 中国石化出版社, 2015.
[15] YANG Zhao. The principle and application of in situ combustion Oil Recovery Technology in heavy oil reservoirs[M]. Beijing: China Petrochemical Press, 2015.
[16] 徐克明, 刘永建, 刘其成. 火烧油层采油技术基础及其应用[M]. 北京: 石油工业出版社, 2015.
[16] XU Keming, LIU Yongjian, LIU Qicheng. Fundamentals and applications of in situ combustion oil recovery technology[M]. Beijing: Petroleum Industry Press, 2015.
[17] 张方礼. 火烧油层技术综述[J]. 特种油气藏, 2011, 18(6): 1-5.
[17] ZHANG Fangli. An overview of in situ combustion technology[J]. Special Oil & Gas Reservoirs, 2011, 18(6): 1-5.
[18] 孙焕泉. 水平井开发技术[M]. 北京: 石油工业出版社, 2012.
[18] SUN Huanquan. Horizontal well development technology[M]. Beijing: Petroleum Industry Press, 2012.
[19] 张继国, 李安夏, 李兆敏, 等. 超稠油油藏HDCS强化采油技术[M]. 东营: 中国石油大学出版社, 2009.
[19] ZHANG Jiguo, LI Anxia, LI Zhaomin, et al. HDCS enhanced oil recovery technology for ultra heavy oil reservoirs[M]. Dongying: China University of Petroleum Press, 2009.
[20] 陶磊, 李兆敏, 毕义泉, 等. 胜利油田深薄层超稠油多元复合开采技术[J]. 石油勘探与开发, 2010, 37(6): 732-736.
[20] TAO Lei, LI Zhaomin, BI Yiquan, et al. Multi-combination exploiting technique of ultra-heavy oil reservoirs with deep and thin layers in Shengli Oilfield[J]. Petroleum Exploration and Development, 2010, 37(6): 732-736.
[21] 孙焕泉. 薄储层超稠油热化学复合采油方法与技术[J]. 石油与天然气地质, 2020, 41(5): 1100-1106.
[21] SUN Huanquan. Hybrid thermal chemical recovery of thin extra-heavy oil reservoirs[J]. Oil & Gas Geology, 2020, 41(5): 1100-1106.
[22] 王金铸, 王学忠. 准西车排子地区浅薄层超稠油开发的难点与对策[J]. 断块油气田, 2012, 19(增刊1): 1-4.
[22] WANG Jinzhu, WANG Xuezhong. Development difficulties and countermeasures of shallow thin extra-heavy oil reservoir in Chepaizi Area in the western margin of Junggar Basin[J]. Fault-Block Oil & Gas Field, 2012, 19(suppl. 1): 1-4.
[23] 王金铸, 王学忠, 刘凯, 等. 春风油田排601区块浅层超稠油HDNS技术先导试验效果评价[J]. 特种油气藏, 2011, 18(4): 59-62.
[23] WANG Jinzhu, WANG Xuezhong, LIU Kai, et al. Evaluation of HDNS pilot test for shallow ultra-heavy oil in the Pai 601 block of the Chunfeng oilfield[J]. Special Oil & Gas Reservoirs, 2011, 18(4): 59-62.
[24] 王学忠, 王金铸, 乔明全. 水平井、氮气及降黏剂辅助蒸汽吞吐技术——以准噶尔盆地春风油田浅薄层超稠油为例[J]. 石油勘探与开发, 2013, 40(1): 97-102.
[24] WANG Xuezhong, WANG Jinzhu, QIAO Mingquan. Horizontal well, nitrogen and viscosity reducer assisted steam huff and puff technology: Taking super heavy oil in shallow and thin beds, Chunfeng Oilfield, Junggar Basin, NW China, as an example[J]. Petroleum Exploration and Development, 2013, 40(1): 97-102.
[25] 刘晏飞, 唐亮, 熊海云, 等. 化学蒸汽驱不同温度区域的驱油特征[J]. 油气地质与采收率, 2015, 22(3): 115-118.
[25] LIU Yanfei, TANG Liang, XIONG Haiyun, et al. Characteristics of oil displacement in different temperature regions of chemical steam flooding[J]. Petroleum Geology and Recovery Efficiency, 2015, 22(3): 115-118.
[26] 唐亮. 稠油油藏化学复合蒸汽驱技术室内研究[J]. 油田化学, 2014, 31(1): 65-68.
[26] TANG Liang. Laboratory study of chemical combination steam flooding for heavy oil reservoir[J]. Oilfield Chemistry, 2014, 31(1): 65-68.
[27] 赵燕, 吴光焕, 孙业恒. 泡沫辅助蒸汽驱矿场试验及效果[J]. 油气地质与采收率, 2017, 24(5): 106-110.
[27] ZHAO Yan, WU Guanghuan, SUN Yeheng. Field test and effect analysis of foam-assisted steam flooding[J]. Petroleum Geology and Recovery Efficiency, 2017, 24(5): 106-110.
[28] 魏超平, 李伟忠, 吴光焕, 等. 稠油降黏剂驱提高采收率机理[J]. 油气地质与采收率, 2020, 27(2): 131-136.
[28] WEI Chaoping, LI Weizhong, WU Guanghuan, et al. EOR mechanism of viscosity reducer flooding in heavy oil reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(2): 131-136.
[29] 郑万刚, 初伟, 崔文富, 等. 渗透降黏驱油剂提高采收率机理[J]. 油气地质与采收率, 2021, 28(6): 129-134.
[29] ZHENG Wangang, CHU Wei, CUI Wenfu, et al. Enhanced oil recovery mechanism of permeable viscosity-reducing oil displacement agent[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(6): 129-134.
[30] 束青林, 郑万刚, 张仲平, 等. 低效热采/水驱稠油转化学降黏复合驱技术[J]. 油气地质与采收率, 2021, 28(6): 12-21.
[30] SHU Qinglin, ZHENG Wangang, ZHANG Zhongping, et al. Chemical viscosity reduction compound flooding technology for low-efficiency thermal recovery/water flooding heavy oil reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(6): 12-21.
[31] 王勇. 烟道气辅助SAGD提高稠油开发效果研究[D]. 青岛: 中国石油大学, 2010.
[31] WANG Yong. Research on improving the development effect of heavy oil by assisting SAGD with flue gas[D]. Qingdao: China University of Petroleum, 2010.
[32] 李兆敏, 王勇, 李宾飞, 等. 烟道气在超稠油中的溶解特性[J]. 特种油气藏, 2010, 17(5): 84-86.
[32] LI Zhaomin, WANG Yong, LI Binfei, et al. Dissolubility of flue gas in super-heavy oil[J]. Special Oil & Gas Reservoirs, 2010, 17(5): 84-86.
[33] 林日亿, 李魏, 李兆敏, 等. 烟气-蒸汽辅助重力泄油模拟技术[J]. 中国石油大学学报(自然科学版), 2012, 36(5): 136-140.
[33] LIN Riyi, LI Wei, LI Zhaomin, et al. Numerical simulation technology of flue gas-steam assisted gravity drainage[J]. Journal of China University of Petroleum(Edition of Natural Science), 2012, 36(5): 136-140.
[34] 张超, 李兆敏, 王弘宇, 等. 烟道气在风城稠油油藏中的溶解特性研究[J]. 西安石油大学学报(自然科学版), 2013, 28(6): 90-94.
[34] ZHANG Chao, LI Zhaomin, WANG Hongyu, et al. Study on dissolubility of flue gas in heavy oil in Fengcheng Oil Field[J]. Journal of Xi'an Shiyou University(Natural Science), 2013, 28(6): 90-94.
[35] 李晨, 苏路, 李秋叶, 等. 稠油催化降黏技术开发研究进展[J]. 化学研究, 2015, 26(3): 323-330.
[35] LI Chen, SU Lu, LI Qiuye, et al. The development of viscosity reduction of heavy oil by catalytic techniques[J]. Chemical Research, 2015, 26(3): 323-330.
[36] 史建民, 吴志连, 王耀国. 稠油水热催化裂解降黏研究进展[J]. 广州化工, 2021, 49(6): 11-13.
[36] SHI Jianmin, WU Zhilian, WANG Yaoguo. Research progress in viscosity reduction through hydrothermal catalytic cracking of heavy oil[J]. Guangzhou Chemical Industry, 2021, 49(6): 11-13.
[37] 成浪. 稠油催化改质降黏催化剂的合成与性能评价[D]. 乌鲁木齐: 新疆大学, 2019.
[37] CHENG Lang. Synthesis and performance evaluation of heavy oil catalytic upgrading and viscosity reduction catalysts[D]. Urumqi: Xinjiang University, 2019.
[38] 张丽慧, 葛明兰, 李向博, 等. 超稠油催化改质降黏研究[J]. 科学技术与工程, 2014, 14(36): 171-175.
[38] ZHANG Lihui, GE Minglan, LI Xiangbo, et al. Upgrading and visbreaking of ultra-heavy crude oil with catalyst[J]. Science Technology and Engineering, 2014, 14(36): 171-175.
[39] 吴永彬, 刘雪琦, 杜宣, 等. 超稠油油藏溶剂辅助重力泄油机理物理模拟实验[J]. 石油勘探与开发, 2020, 47(4): 765-771.
[39] WU Yongbin, LIU Xueqi, DU Xuan, et al. Scaled physical experiments on drainage mechanisms of solvent-expanded SAGD in super-heavy oil reservoirs[J]. Petroleum Exploration and Development, 2020, 47(4): 765-771.
[40] 罗健, 李秀峦, 王红庄, 等. 溶剂辅助蒸汽重力泄油技术研究综述[J]. 石油钻采工艺, 2014, 36(3): 106-110.
[40] LUO Jian, LI Xiuluan, WANG Hongzhuang, et al. Research on ES-SAGD technology[J]. Oil Drilling & Production Technology, 2014, 36(3): 106-110.
[41] 崔传智, 郑文乾, 祝仰文, 等. 蒸汽吞吐后转降黏化学驱加密井井位优化方法[J]. 石油学报, 2020, 41(12): 1643-1648.
[41] CUI Chuanzhi, ZHENG Wenqian, ZHU Yangwen, et al. A method for optimizing the location of infill wells exploited by viscosity reduction chemical flooding after steam huff and puff stimulation[J]. Acta Petrolei Sinica, 2020, 41(12): 1643-1648.
[42] 胡渤, 郑文乾, 祝仰文, 等. 稠油油藏降黏化学驱注入方式优化[J]. 油气地质与采收率, 2020, 27(6): 91-99.
[42] HU Bo, ZHENG Wenqian, ZHU Yangwen, et al. Optimization of injection methods for viscosity reducing chemical flooding in heavy oil reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(6): 91-99.
[43] 束青林, 胡婧, 林军章, 等. “益生菌”提高难采稠油采收率机理与技术实践[J]. 油气地质与采收率, 2022, 29(4): 76-82.
[43] SHU Qinglin, HU Jing, LIN Junzhang, et al. Mechanism and technical practice of enhancing oil recovery of hard-to-recover heavy oil reservoirs with probiotics[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(4): 76-82.
[44] 孙刚正, 胡婧, 刘涛, 等. 油藏物性及采出程度对内源微生物驱油效果的影响[J]. 油气地质与采收率, 2021, 28(2): 41-48.
[44] SUN Gangzheng, HU Jing, LIU Tao, et al. Effects of reservoir physical properties and recoveries on oil displacement of endogenous microbes[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(2): 41-48.
[45] 郭德明, 潘毅, 孙扬, 等. 低渗稠油油藏降黏剂-CO2复合驱提高采收率机理研究[J]. 油气藏评价与开发, 2022, 12(5): 794-802.
[45] GUO Deming, PAN Yi, SUN Yang, et al. EOR mechanism of viscosity reducer-CO2 combined flooding in heavy oil reservoir with low permeability[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(5): 794-802.
[46] 王舒华. 超临界CO2对原油性质影响规律研究[D]. 青岛: 中国石油大学(华东), 2014.
[46] WANG Shuhua. Research on the influence of supercritical CO2 on the properties of crude oil[D]. Qingdao: China University of Petroleum (East China), 2014.
[47] 于田田, 郝婷婷, 翟勇. 增溶剂作用下二氧化碳在稠油中的溶解机理[J]. 油田化学, 2022, 39(3): 449-454.
[47] YU Tiantian, HAO Tingting, ZHAI Yong. Dissolution mechanism of carbon dioxide in heavy oil with 1,2-dimethoxyethane as solubilizer[J]. Oilfield Chemistry, 2022, 39(3): 449-454.
[48] 徐德龙, 高金彪, 李超, 等. 超声波应用于稠油降黏的实验研究[J]. 声学技术, 2020, 39(6): 682-685.
[48] XU Delong, GAO Jinbiao, LI Chao, et al. Experimental study of heavy oil viscosity reduction by using ultrasonic wave[J]. Technical Acoustics, 2020, 39(6): 682-685.
[49] 张达礼, 戴咏川. 超声波对重质油黏度和黏温性能的影响[J]. 当代化工, 2011, 40(9): 885-887.
[49] ZHANG Dali, DAI Yongchuan. Influence of ultrasound on viscosity and viscosity-temperature property of heavy oil[J]. Contemporary Chemical Industry, 2011, 40(9): 885-887.
[50] 赵法军, 王广昀, 哈斯, 等. 国内外稠油和沥青VAPEX技术发展现状与分析[J]. 化工进展, 2012, 31(2): 304-309.
[50] ZHAO Fajun, WANG Guangyun, HA Si, et al. Development of vapor extraction technique in heavy oil and bitumen recovery[J]. Chemical Industry and Engineering Progress, 2012, 31(2): 304-309.
[51] 吴景春, 石芳, 赵阳, 等. 功能性纳米驱油剂研究进展[J]. 东北石油大学学报, 2020, 44(5): 70-75.
[51] WU Jingchun, SHI Fang, ZHAO Yang, et al. Research progress in functional nano-oil displacement agents[J]. Journal of Northeast Petroleum University, 2020, 44(5): 70-75.
[52] 侯吉瑞, 闻宇晨, 屈鸣, 等. 纳米材料提高油气采收率的研究及应用[J]. 特种油气藏, 2020, 27(6): 47-53.
[52] HOU Jirui, WEN Yuchen, QU Ming, et al. Research and application of nano-materials to enhance oil and gas recovery technology[J]. Special Oil & Gas Reservoirs, 2020, 27(6): 47-53.
[53] 刘江涛, 关小旭, 贺桃娥, 等. 纳米聚合物微球调剖剂的性能评价[J]. 石油与天然气化工, 2023, 52(4): 77-82.
[53] LIU Jiangtao, GUAN Xiaoxu, HE Tao'e, et al. Performance evaluation of nano-polymer microsphere profile control agen[J]. Chemical Engineering of Oil & Gas, 2023, 52(4): 77-82.
[54] 张辰君, 金旭, 袁彬, 等. 纳米驱油材料提高采收率研究进展、挑战及前景[J]. 西南石油大学学报(自然科学版), 2023, 45(1): 55-70.
[54] ZHANG Chenjun, JIN Xu, YUAN Bin, et al. Research progress, challenge and prospect of nanoscale oil-displacing materials for enhanced oil recovery[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2023, 45(1): 55-70.
文章导航

/