油气藏评价与开发 >
2024 , Vol. 14 >Issue 4: 569 - 576
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2024.04.006
四川盆地灯影组酸压裂缝导流能力实验和模拟研究
收稿日期: 2023-08-31
网络出版日期: 2024-09-10
基金资助
中国石油—西南石油大学创新联合体科技合作项目“深层超高温(200 ℃)碳酸盐岩气藏酸处理增产改造关键技术研究”(2020CX0105)
Experimental and simulation study on fracture conductivity of acid-fracturing in Dengying Formation of Sichuan Basin
Received date: 2023-08-31
Online published: 2024-09-10
酸压是深层、超深层海相碳酸盐岩油气藏增产的核心技术,而如何在超高温和高闭合应力下保持住酸蚀裂缝导流能力是酸压改造能否成功的关键。利用自研的高温高压酸蚀裂缝导流能力测试装置开展不同酸液及组合下灯影组岩样裂缝导流能力实验,使用三维激光扫描仪获取酸刻蚀裂缝形貌,基于此,采用Airy(艾里)应力函数和复变量法,描述酸蚀裂缝闭合程度,结合局部立方定律,耦合酸压模型,形成了酸蚀裂缝导流能力数值计算方法。结果表明:与低闭合应力(5 MPa)相比,高闭合应力(90 MPa)下多数酸液及其组合的导流能力降低了一个数量级;闭合应力增加,不同酸液及组合的导流能力降低模式有较大区别,可能会出现2次快速下降阶段;不同酸液组合注入可在一定程度上改善超高温和高闭合应力下酸蚀裂缝导流能力;酸蚀裂缝导流能力计算模型与实验结果平均误差较小,约10.6%,且能表征缝内各处导流能力分布及大小;相同工程参数条件下,四川盆地灯影组四段酸压裂缝导流能力较灯影组二段更高,可为四川盆地深层、超深层海相碳酸盐岩酸压改造方案优化设计提供理论指导。
陈祥 , 王冠 , 刘平礼 , 杜娟 , 王铭 , 陈伟华 , 李金龙 , 刘金明 , 刘飞 . 四川盆地灯影组酸压裂缝导流能力实验和模拟研究[J]. 油气藏评价与开发, 2024 , 14(4) : 569 -576 . DOI: 10.13809/j.cnki.cn32-1825/te.2024.04.006
Acid fracturing is a critical stimulation technology for enhancing production in ultra-deep marine carbonate reservoirs. A significant challenge in this process is maintaining the conductivity of acid-etched fractures under ultra-high temperature and high closure stress conditions. To address this, conductivity experiments were conducted using various acid solutions and their combinations. The morphology of the acid-etched fractures was captured using a three-dimensional laser scanner. The degree of fracture closure was analyzed using the Airy stress function and the complex variable method, integrated with the local cubic law and an acid fracturing model to create a numerical calculation method for evaluating the conductivity of acid-etched fractures. The results show that under high closure stress(90 MPa), the conductivity of acids and their combinations decreases by an order of magnitude compared to low closure stress(5 MPa). As closure stress increases, different acids and combinations exhibit distinct patterns of conductivity reduction, with potential for two rapid decline phases. Furthermore, specific acid combinations have been identified that enhance the conductivity of fractures under extreme conditions of temperature and pressure. The average error between the conductivity values calculated by the model and those obtained from experimental results is relatively low, about 10.6%, indicating that the model can effectively characterize the distribution and magnitude of conductivity across different points within the fracture. In Sichuan Basin, under identical engineering parameters, the conductivity of acid-etched fractures in the 4th member of Dengying Formation is higher than that in the 2nd member. This research provides valuable theoretical guidance for optimizing the design of acid fracturing stimulation schemes in ultra-deep marine carbonate rocks in Sichuan Basin.
Key words: carbonate; acid-fracturing; conductivity; acid combination; numerical simulation
[1] | 熊加贝, 何登发. 全球碳酸盐岩地层-岩性大油气田分布特征及其控制因素[J]. 岩性油气藏, 2022, 34(1): 187-200. |
[1] | XIONG Jiabei, HE Dengfa. Distribution characteristics and controlling factors of global giant carbonate stratigraphic-lithologic oil and gas fields[J]. Lithologic Reservoirs, 2022, 34(1): 187-200. |
[2] | 王大鹏. 全球古生界海相碳酸盐岩油气富集规律研究[D]. 北京: 中国石油大学(北京), 2016. |
[2] | WANG Dapeng. Hydrocarbon accumulation patterns in the marine paleozoic carbonate reservoirs in the world[D]. Beijing: China University of Petroleum(Beijing), 2016. |
[3] | 张宁宁, 何登发, 孙衍鹏, 等. 全球碳酸盐岩大油气田分布特征及其控制因素[J]. 中国石油勘探, 2014, 19(6): 54-65. |
[3] | ZHANG Ningning, HE Dengfa, SUN Yanpeng, et al. Distribution patterns and controlling factors of giant carbonate rock oil and gas fields worldwide[J]. China Petroleum Exploration, 2014, 19(6): 54-65. |
[4] | RAFIEI Y, MOTIE M. Improved reservoir characterization by employing hydraulic flow unit classification in one of iranian carbonate reservoirs[J]. Advances in Geo-Energy Research, 2019, 3(3): 277-286. |
[5] | CHEN X, LIU P L, ZHAO L Q, et al. Diverting fracturing stimulation technique using a novel temporary plugging agent with multiphase transition properties at different temperatures[C]// Paper SPE-212735-MS presented at the SPE Canadian Energy Technology Conference and Exhibition, Calgary, Alberta, Canada, March 2023. |
[6] | 王志伟, 张凯, 武群虎, 等. 基于井震裂缝识别敏感性参数模型的碳酸盐岩储层裂缝预测方法[J]. 煤田地质与勘探, 2023, 51(6): 163-174. |
[6] | WANG Zhiwei, ZHANG Kai, WU Qunhu, et al. A method for predicting fractures in carbonate reservoirs based on fracture identification-sensitive log-seismic parameter model[J]. Coal Geology & Exploration, 2023, 51(6): 163-174. |
[7] | 何海清, 范土芝, 郭绪杰, 等. 中国石油“十三五”油气勘探重大成果与“十四五”发展战略[J]. 中国石油勘探, 2021, 26(1): 17-30. |
[7] | HE Haiqing, FAN Tuzhi, GUO Xujie, et al. Major achievements in oil and gas exploration of PetroChina during the 13th Five-Year Plan period and its development strategy for the 14th Five-Year Plan[J]. China Petroleum Exploration, 2021, 26(1): 17-30. |
[8] | 蔡勋育, 刘金连, 张宇, 等. 中国石化“十三五”油气勘探进展与“十四五”前景展望[J]. 中国石油勘探, 2021, 26(1): 31-42. |
[8] | CAI Xunyu, LIU Jinlian, ZHANG Yu, et al. Oil and gas exploration progress of Sinopec during the 13th Five-Year Plan period and prospect forecast for the 14th Five-Year Plan[J]. China Petroleum Exploration, 2021, 26(1): 31-42. |
[9] | HUANG Z Q, XING H C, ZHOU X, et al. Numerical study of vug effects on acid-rock reactive flow in carbonate reservoirs[J]. Advances in Geo-Energy Research, 2020, 4(4): 448-459. |
[10] | 李曙光, 王红娜, 徐博瑞, 等. 大宁-吉县区块深层煤层气井酸化压裂产气效果影响因素分析[J]. 煤田地质与勘探, 2022, 50(3): 165-172. |
[10] | LI Shuguang, WANG Hongna, XU Borui, et al. Influencing factors on gas production effect of acid fractured CBM Wells in deep coal seam of Daning-Jixian Block[J]. Coal Geology & Exploration, 2022, 50(3): 165-172. |
[11] | CHEN X, ZHAO L Q, LIU P L, et al. Experimental study and field verification of fracturing technique using a thermo-responsive diverting agent[J]. Journal of Natural Gas Science and Engineering, 2021, 92: 103993. |
[12] | ZHAO L Q, CHEN X, ZOU H L, et al. A review of diverting agents for reservoir stimulation[J]. Journal of Petroleum Science and Engineering, 2020, 187: 106734. |
[13] | DU J, GUO J H, ZHAO L Q, et al. Corrosion inhibition of N80 steel simulated in an oil field acidification environment[J]. International Journal of Electrochemical Science, 2018, 13(6): 5810-5823. |
[14] | 刘长松, 赵海峰, 陈帅, 等. 大宁-吉县区块深层煤层气井酸压工艺及现场试验[J]. 煤田地质与勘探, 2022, 50(9): 154-162. |
[14] | LIU Changsong, ZHAO Haifeng, CHEN Shuai, et al. Acid fracturing technology of deep CBM wells and its field test in Daning-Jixian Block[J]. Coal Geology & Exploration, 2022, 50(9): 154-162. |
[15] | 赵立强, 高俞佳, 袁学芳, 等. 高温碳酸盐岩储层酸蚀裂缝导流能力研究[J]. 油气藏评价与开发, 2017, 7(1): 20-26. |
[15] | ZHAO Liqiang, GAO Yujia, YUAN Xuefang, et al. Research on flow conductivity of acid etched fracture of carbonate reservoir under high temperature[J]. Petroleum Reservoir Evaluation and Development, 2017, 7(1): 20-26. |
[16] | ZHANG N L, CHEN X, LUO Z F, et al. Experimental study of fracture conductivity in dolomite reservoirs treated with different acid fracturing technologies[J]. Geoenergy Science and Engineering, 2023, 227(5): 211914. |
[17] | AL-MOMIN A, ZHU D, HILL A D. The Effects of Initial Condition of Fracture Surfaces, Acid Spending and Acid Type on Conductivity of Acid Fracture[C]// Paper OTC-24895-MS presented at the Offshore Technology Conference-Asia, Kuala Lumpur, Malaysia, March 2014. |
[18] | 牟建业, 张士诚. 酸压裂缝导流能力影响因素分析[J]. 油气地质与采收率, 2011, 18(2): 69-71. |
[18] | MOU Jianye, ZHANG Shicheng. Influence factor analysis on acid pressure rips diversion capacity[J]. Petroleum Geology and Recovery Efficiency, 2011, 18(2): 69-71. |
[19] | 李小刚, 杨兆中, 张俊良, 等. 酸压裂缝导流能力研究回顾与展望[J]. 新疆石油地质, 2012, 33(2): 241-243. |
[19] | LI Xiaogang, YANG Zhaozhong, ZHANG Junliang, et al. Review and prospect of study on acid fracturing conductivity[J]. Xinjiang Petroleum Geology, 2012, 33(2): 241-243. |
[20] | ALJAWAD M S, ALJULAIH H, MAHMOUD M, et al. Integration of field, laboratory, and modeling aspects of acid fracturing: A comprehensive review[J]. Journal of Petroleum Science and Engineering, 2019, 181: 106158. |
[21] | 苟申延, 王世彬, 郭建春. 交替注入工艺对深层海相碳酸盐岩酸蚀裂缝导流能力的影响研究[J]. 钻采工艺, 2023, 46(2): 94-99. |
[21] | GOU Shenyan, WANG Shibin, GUO Jianchun. Influence of alternate injection process on conductivity of acid-etched fractures in deep marine carbonate rocks[J]. Drilling & Production Technology, 2023, 46(2): 94-99. |
[22] | 李沁, 伊向艺, 卢渊, 等. 储层岩石矿物成分对酸蚀裂缝导流能力的影响[J]. 西南石油大学学报(自然科学版), 2013, 35(2): 102-108. |
[22] | LI Qin, YI Xiangyi, LU Yuan, et al. Influence of reservoir mineralogical composition on acid fracture conductivity[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2013, 35(2): 102-108. |
[23] | 李年银, 赵立强, 张倩, 等. 酸压过程中酸蚀裂缝导流能力研究[J]. 钻采工艺, 2008, 31(6): 59-62. |
[23] | LI Nianyin, ZHAO Liqiang, ZHANG Qian, et al. Acid etched fracture conductivity study in acid fracturing[J]. Drilling & Production Technology, 2008, 31(6): 59-62. |
[24] | 苟波, 马辉运, 刘壮, 等. 非均质碳酸盐岩油气藏酸压数值模拟研究进展与展望[J]. 天然气工业, 2019, 39(6): 87-98. |
[24] | GOU Bo, MA Huiyun, LIU Zhuang, et al. Research progress and prospect of numerical modeling for acid fracturing of heterogeneous carbonate reservoirs[J]. Natural Gas Industry, 2019, 39(6): 87-98. |
[25] | 陈星宇, 杨兆中, 李小刚, 等. 酸蚀裂缝导流能力实验及预测模型研究综述[J]. 断块油气田, 2012, 19(5): 618-621. |
[25] | CHEN Xingyu, YANG Zhaozhong, LI Xiaogang, et al. Overview of study on experiment and predicting model of acid-etched fracture conductivity[J]. Fault-Block Oil & Gas Field, 2012, 19(5): 618-621. |
[26] | 龚云蕾, 刘平礼, 罗志峰, 等. 酸压裂缝导流能力计算模型的研究现状[J]. 长江大学学报(自科版), 2013, 10(20): 129-132. |
[26] | GONG Yunlei, LIU Pingli, LUO Zhifeng, et al. Current situation of calculation models of acidic fracture conductivity[J]. Journal of Yangtze University(Natural Science Edition), 2013, 10(20): 129-132. |
[27] | GOMAA A M, NASR-EL-DIN H A. Acid fracturing: The effect of formation strength on fracture conductivity[C]// Paper SPE-119623-MS presented at the SPE Hydraulic Fracturing Technology Conference, The Woodlands, Texas, January 2009. |
[28] | NASR-EL-DIN H A, AL-DRIWEESH S M, METCALF A S, et al. Fracture acidizing: What role does formation softening play in production response?[J]. SPE Production & Operations, 2008, 23(2): 184-191. |
[29] | NIERODE D E, KRUK K F. An evaluation of acid fluid loss additives retarded acids, and acidized fracture conductivity[C]// Paper SPE-4549-MS presented at the Fall Meeting of the Society of Petroleum Engineers of AIME, Las Vegas, Nevada, September 1973. |
[30] | ASADOLLAHPOUR E, BAGHBANAN A, HASHEMOLHOSSEINI H, et al. The etching and hydraulic conductivity of acidized rough fractures[J]. Journal of Petroleum Science and Engineering, 2018, 166: 704-717. |
[31] | AL-MUTAIRI S H, HILL A D, NASR-EL-DIN H A. Fracture conductivity using emulsified acids: Effects of emulsifier concentration and acid volume fraction[C]// Paper IPTC-12186-MS presented at the International Petroleum Technology Conference, Kuala Lumpur, Malaysia, December 2008. |
[32] | 袁征, 黄杰, 袁文奎, 等. 压裂裂缝长期导流能力衰退规律实验研究[J]. 非常规油气, 2022, 9(3): 78-82. |
[32] | YUAN Zheng, HUANG Jie, YUAN Wenkui, et al. Experimental study on long term conductivity decline of hydraulic fracturing fracture[J]. Unconventional Oil & Gas, 2022, 9(3): 78-82. |
[33] | 张启龙, 黄中伟, 谭强, 等. 疏松砂岩压裂充填裂缝扩展与参数优化研究[J]. 石油机械, 2023, 51(5): 67-75. |
[33] | ZHANG Qilong, HUANG Zhongwei, TAN Qiang, et al. Study on fracture propagation and parameter optimization of fracturing packing in unconsolidated sandstone reservoirs[J]. China Petroleum Machinery, 2023, 51(5): 67-75. |
[34] | LU C, BAI X, LUO Y, et al. New study of etching patterns of acid-fracture surfaces and relevant conductivity[J]. Journal of Petroleum Science and Engineering, 2017, 159: 135-147. |
[35] | 白翔. 基于刻蚀形态数字化表征的酸蚀裂缝导流能力研究[D]. 成都: 西南石油大学, 2015. |
[35] | BAI Xiang. Research on the conductivity of acid etched fractures based on digital characterization of etching morphology[D]. Chengdu: Southwest Petroleum University, 2015. |
[36] | DENG J Y, MOU J Y, HILL A D D, et al. A new correlation of acid-fracture conductivity subject to closure stress[J]. SPE Production & Operations, 2012, 27(2): 158-169. |
[37] | DENG J, HILL A D D, ZHU D. A theoretical study of acid-fracture conductivity under closure stress[J]. SPE Production & Operations, 2011, 26(1): 9-17. |
[38] | KAMALI A, POURNIK M. Fracture closure and conductivity decline modeling-Application in unpropped and acid etched fractures[J]. Journal of Unconventional Oil and Gas Resources, 2016, 14: 44-55. |
[39] | 孔祥伟, 严仁田, 张思琦, 等. 真三轴大物模水力压裂裂缝起裂及扩展模拟实验[J]. 石油与天然气化工, 2023, 52(3): 97-102. |
[39] | KONG Xiangwei, YAN Rentian, ZHANG Siqi, et al. Simulation experiment of fracture initiation and propagation of hydraulic fracturing with true triaxial large physical model[J]. Chemical Engineering of Oil & Gas, 2023, 52(3): 97-102. |
[40] | 杨钊, 孙锐, 梁飞, 等. 基于裂缝诱导应力场的套管应力影响因素分析[J]. 石油机械, 2023, 51(4): 135-143. |
[40] | YANG Zhao, SUN Rui, LIANG Fei, et al. Analysis on influential factors of casing stress based on fracture induced stress field[J]. China Petroleum Machinery, 2023, 51(4): 135-143. |
[41] | 赵立强, 缪尉杰, 罗志锋, 等. 闭合酸蚀裂缝导流能力模拟研究[J]. 油气藏评价与开发, 2019, 9(2): 25-32. |
[41] | ZHAO Liqiang, MIU Weijie, LUO Zhifeng, et al. Simulation study on conductivity of closed acid cracks[J]. Petroleum Reservoir Evaluation and Development, 2019, 9(2): 25-32. |
[42] | JAEGER J C, COOK N G W, ZIMMERMAN R W. Fundamentals of Rock Mechanics[M]. 4th ed. Malden, Massachusetts: Blackwell Publishing, 2007. |
[43] | MAUGIS D. Stresses and displacements around cracks and elliptical cavities: Exact solutions[J]. Engineering Fracture Mechanics, 1992, 43(2): 217-255. |
[44] | MYER L R. Fractures as collections of cracks[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(1): 231-243. |
[45] | XUE H, HUANG Z X, LIU F, et al. 3D acid fracturing simulation and application in the upper Sinian Dengying Fm gas reservoirs in China[C]// Paper IPTC-19137-MS presented at the International Petroleum Technology Conference, Beijing, China, March 2019. |
/
〈 | 〉 |