油气藏评价与开发 >
2024 , Vol. 14 >Issue 4: 600 - 609
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2024.04.010
四川盆地海相页岩水平井压裂裂缝研究进展及认识
收稿日期: 2023-06-12
网络出版日期: 2024-09-10
基金资助
四川省科技计划项目“页岩压裂的损伤力学特征研究”(2020JDJQ0059)
Research progress and understanding of fracturing fractures in horizontal wells of marine shale in Sichuan Basin
Received date: 2023-06-12
Online published: 2024-09-10
页岩气作为清洁、低碳的非常规天然气,规模化开发有利于推动中国实现“碳达峰、碳中和”。经过近10 a的理论与技术体系攻关,中国页岩气压裂实现了从无到有、从跟跑到部分领跑的跨越。从页岩气压裂工艺出发,围绕裂缝布局、压裂造缝、支撑裂缝3个方面进行了详细阐述,得到以下几点认识:①储层改造体积和裂缝复杂程度的最大化是缝网特征的2个优化目标,进而实现页岩气产能的最大化;②压裂造缝时,需要保证各簇裂缝均匀起裂,同时由于地应力场的非均质性与天然裂缝等结构弱面的存在,压裂裂缝会发生簇间串通或重叠,导致裂缝缝间距并不等于簇间距;③在密切割、强加砂条件下,极限限流压裂适用性不强,缝口暂堵压裂、缝内暂堵压裂、狭窄分叉缝铺砂均涉及复杂的液固两相流的科学问题尚需解决;④对于含支撑剂的支撑裂缝,需要根据产能或产量的需求,确定导流能力需求值与分布模式,进而优化支撑剂参数和铺砂工艺。结论认为:持续加强深层、超深层页岩储层压裂改造的相关理论研究和工艺技术攻关,精细化、精准化、差异化设计相关压裂施工参数,明确支撑剂在复杂裂缝网络的运移机制及分布模式,综合优化各级裂缝导流能力至关重要。研究成果对中国深层、超深层页岩气开发实现降本—提质—增效具有参考意义。
杨兆中 , 袁健峰 , 张景强 , 李小刚 , 朱静怡 , 何建冈 . 四川盆地海相页岩水平井压裂裂缝研究进展及认识[J]. 油气藏评价与开发, 2024 , 14(4) : 600 -609 . DOI: 10.13809/j.cnki.cn32-1825/te.2024.04.010
The rapid development of shale gas, a clean and low-carbon unconventional natural gas, plays a key role in supporting China’s goals for achieving a carbon peak and carbon neutrality. Over the past decade, China has made significant strides in the theoretical and technical aspects of shale gas fracturing, progressing from non-existence to existence and evolving from followers to partially leading the field. This paper discusses three critical aspects of the shale gas fracturing process: fracture layout, fracture creation, and support fracture, yielding several key insights: ① The primary objectives in optimizing the characteristics of the fracture network are to maximize reservoir modification volume and fracture complexity. This maximization is crucial for enhancing the shale gas production capacity. ② During the fracturing process, it is essential to ensure uniform fracture initiation across each cluster. However, due to the non-homogeneity of the ground stress field and the presence of structural weak surfaces such as natural fractures, inter-cluster collusion or overlap of fractured fractures often occurs. This results in the actual fracture seam spacing being unequal to the planned cluster spacing. ③ Under conditions of close cutting and strong sand addition, the applicability of limit flow restriction fracturing is limited. The scientific challenges related to temporary plugging at the fracture mouth, temporary plugging within the fracture, and sand placement in narrow bifurcation seams remain unresolved. These challenges involve complex liquid-solid two-phase flow dynamics. ④ For fractures containing proppant, it is necessary to determine the inflow capacity demand and distribution mode based on the reservoir’s capacity or production demands. Subsequently, optimizing the proppant parameters and the sand placement process is crucial. The paper concludes that ongoing enhancement in theoretical research and process technology related to the fracturing transformation of deep and ultra-deep shale reservoirs is essential. It is imperative to refine, accurately design, and differentially set the fracturing construction parameters, elucidate the transport mechanism and distribution mode of proppant in complex fracture networks, and optimize fracture conductivity comprehensively. The research findings presented here are of significant reference value for the development of deep to ultra-deep shale gas in China, aiming to achieve cost reduction, quality improvement, and efficiency enhancement.
[1] | 马新华, 王红岩, 赵群, 等. 川南海相深层页岩气“极限动用”开发实践[J]. 石油勘探与开发, 2022, 49(6): 1190-1197. |
[1] | MA Xinhua, WANG Hongyan, ZHAO Qun, et al. “Extreme utilization” development of deep shale gas in southern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2022, 49(6): 1190-1197. |
[2] | 乐宏, 杨兆中, 范宇. 宁209井区裂缝控藏体积压裂技术研究与应用[J]. 西南石油大学学报(自然科学版), 2020, 42(5): 86-98. |
[2] | YUE Hong, YANG Zhaozhong, FAN Yu. Research and application of volume fracturing technology fracture control in Ning 209 Area[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2020, 42(5): 86-98. |
[3] | 郑爱维, 梁榜, 舒志国, 等. 基于大数据PLS法的页岩气产能影响因素分析——以四川盆地涪陵气田焦石坝区块为例[J]. 天然气地球科学, 2020, 31(4): 542-551. |
[3] | ZHENG Aiwei, LIANG Bang, SHU Zhiguo, et al. Analysis of influencing factors of shale gas productivity based on large data technology: A case of Jiaoshiba block in Fuling Gas Field, Sichuan Basin[J]. Natural Gas Geoscience, 2020, 31(4): 542-551. |
[4] | 苏玉亮, 盛广龙, 王文东, 等. 页岩气藏体积压裂有效改造体积计算方法[J]. 地球科学, 2017, 42(8): 1314-1323. |
[4] | SU Yuliang, SHENG Guanglong, WANG Wendong, et al. A new approach to calculate effective stimulated reservoir volume in shale gas reservoir[J]. Earth Science, 2017, 42(8): 1314-1323. |
[5] | REN L, SU Y L, ZHAN S Y, et al. Modeling and simulation of complex fracture network propagation with SRV fracturing in unconventional shale reservoirs[J]. Journal of Natural Gas Science and Engineering, 2016, 28: 132-141. |
[6] | 蒋豪, 胥云, 翁定为, 等. 水平井体积压裂基质-裂缝渗流规律分析[J]. 西安石油大学学报(自然科学版), 2019, 34(3): 49-55. |
[6] | JIANG Hao, XU Yun, WENG Dingwei, et al. Analysis of seepage characteristics in matrix and fracture in volume fracturing of a horizon-tal well[J]. Journal of Xian Shiyou University(Natural Science Edition), 2019, 34(3): 49-55. |
[7] | 王旭林. 页岩压裂改造体积估算算法研究[D]. 荆州: 长江大学, 2021. |
[7] | WANG Xulin. Research on volume estimation algorithm of shale fracturing reformation[D]. Jingzhou: Yangtze University, 2021. |
[8] | 李海涛, 罗红文, 向雨行, 等. 基于DTS的页岩气水平井人工裂缝识别与产出剖面解释方法[J]. 天然气工业, 2021, 41(5): 66-75. |
[8] | LI Haitao, LUO Hongwen, XIANG Yuxing, et al. DTS based hydraulic fracture identification and production profile interpretation method of horizontal well[J]. Natural Gas Industry, 2021, 41(5): 66-75. |
[9] | 糜利栋. 基于产气剖面的页岩气离散裂缝网络反演方法[J]. 石油学报, 2021, 42(4): 481-491. |
[9] | MI Lidong. Inversion method of discrete fracture network of shale gas based on gas production profile[J]. Acta Petrolei Sinica, 2021, 42(4): 481-491. |
[10] | 吴建发, 常程, 韩建, 等. 考虑树状次生裂缝的页岩气藏试井分析模型及其应用[J]. 钻采工艺, 2022, 45(3): 84-88. |
[10] | WU Jianfa, CHANG Cheng, HAN Jian, et al. Shale gas well test analysis model considering the characteristics of tree-shaped secondary fractures and its application[J]. Drilling & Production Technology, 2022, 45(3): 84-88. |
[11] | 胡德高, 郭肖, 郑爱维, 等. 页岩气藏压裂井产能评价及分析[J]. 西南石油大学学报(自然科学版), 2019, 41(6): 132-138. |
[11] | HU Degao, GUO Xiao, ZHENG Aiwei, et al. Productivity evaluation of fractured wells in shale gas reservoirs[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2019, 41(6): 132-138. |
[12] | 宋彦志, 杨倩, 任哲雨, 等. 页岩气藏压裂水平井产能计算及其影响因素[J]. 大庆石油地质与开发, 2023, 42(3): 158-166. |
[12] | SONG Yanzhi, YANG Qian, REN Zheyu, et al. Productivity calculation and its influencing factors of fractured horizontal well in shale gas reservoir[J]. Petroleum Geology & Oilfield Development in Daqing, 2023, 42(3): 158-166. |
[13] | 王兴文, 林永茂, 缪尉杰. 川南深层页岩气体积压裂工艺技术[J]. 油气藏评价与开发, 2021, 11(1): 102-108. |
[13] | WANG Xingwen, LIN Yongmao, MIAO Weijie. Volume fracturing technology of deep shale gas in southern Sichuan[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(1): 102-108. |
[14] | 卢比, 胡春锋, 马军. 南川页岩气田压裂水平井井间干扰影响因素及对策研究[J]. 油气藏评价与开发, 2023, 13(3): 330-339. |
[14] | LU Bi, HU Chunfeng, MA Jun. Influencing factors and countermeasures of inter-well interference of fracturing horizontal wells in Nanchuan shale gas field[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 330-339. |
[15] | 梅海燕, 马明伟, 于倩, 等. 页岩气藏压裂水平井产能及其影响因素[J]. 大庆石油地质与开发, 2019, 38(1): 71-77. |
[15] | MEI Haiyan, MA Mingwei, YU Qian, et al. Productivity of fractured horizontal well in shale gas reservoir and its influencing factors[J]. Petroleum Geology and Oilfield development in Daqing, 2019, 38(1): 71-77. |
[16] | 唐波涛, 曾冀, 陈伟华, 等. 川中秋林地区致密砂岩水平井多簇射孔优化设计方法及应用效果[J]. 油气藏评价与开发, 2022, 12(2): 337-344. |
[16] | TANG Botao, ZENG Ji, CHEN Weihua, et al. Multi cluster perforation optimization design method and its application effect of tight sandstone horizontal wells in Qiulin area, central Sichuan[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(2): 337-344. |
[17] | 李勇明, 骆昂, 吴磊, 等. 考虑应力敏感和水力裂缝方位角的页岩产能模型[J]. 西南石油大学学报(自然科学版), 2019, 41(6): 117-123. |
[17] | LI Yongming, LUO Ang, WU Lei, et al. Shale productivity model considering stress sensitivity and hydraulic fracture azimuth[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2019, 41(6): 117-123. |
[18] | 徐静, 霍春亮, 叶小明, 等. 基于多尺度融合的巨厚复杂裂缝性储层精细表征[J]. 中国海上油气, 2021, 33(3): 93-99. |
[18] | XU Jing, HUO Chunliang, YE Xiaoming, et al. Fine characterization of complex fractured reservoirs with huge thickness based on multi scale I fusion[J]. China Offshore Oil and Gas, 2021, 33(3): 93-99. |
[19] | 尚校森, 丁云宏, 卢拥军, 等. 一种页岩体积压裂复杂裂缝的量化表征[J]. 石油与天然气地质, 2017, 38(1): 189-195. |
[19] | SHANG Xiaosen, DING Yunhong, LU Yongjun, et al. Quantitative characterization of complex fractures after volume fracturing in shale[J]. Oil & Gas Geology, 2017, 38(1): 189-195. |
[20] | 于学亮, 胥云, 翁定为, 等. 页岩油藏“密切割”体积改造产能影响因素分析[J]. 西南石油大学学报(自然科学版), 2020, 42(3): 132-143. |
[20] | YU Xueliang, XU Yun, WENG Dingwei, et al. Factors influencing the productivity of the multi-fractured shale oil reservoir with tighter clusters[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2020, 42(3): 132-143. |
[21] | 杜悦, 崔欢, 袁渊, 等. 天然裂缝对页岩气井产能的影响评价[J]. 天然气工业, 2021, 41(增刊1): 118-123. |
[21] | DU Yue, CUI Huan, YUAN Yuan, et al. Evaluation of the influence of natural fractures on the productivity of shale gas wells[J]. Natural Gas Industry, 2021, 41(suppl. 1): 118-123. |
[22] | 李小刚, 何建冈, 杨兆中, 等. 基于离散元法的压裂裂缝特征研究[J]. 油气藏评价与开发, 2023, 13(3): 348-357. |
[22] | LI Xiaogang, HE Jiangang, YANG Zhaozhong, et al. Fracture characteristics based on discrete element method[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 348-357. |
[23] | 商晓飞, 龙胜祥, 段太忠. 页岩气藏裂缝表征与建模技术应用现状及发展趋势[J]. 天然气地球科学, 2021, 32(2): 215-232. |
[23] | SHANG Xiaofei, LONG Shengxiang, DUAN Taizhong. Current situation and development trend of fracture characterization and modeling techniques in shale gas reservoirs[J]. Natural Gas Geoscience, 2021, 32(2): 215-232. |
[24] | 任岚, 赵金洲, 林然, 等. 页岩压裂水平井增产改造体积的动态演化模型[J]. 应用数学和力学, 2018, 39(10): 1099-1114. |
[24] | REN Lan, ZHAO Jinzhou, LIN Ran, et al. A dynamic evolution model for stimulated reservoir volume of the staged fractured horizontal well in shale gas reservoir[J]. Applied Mathematics and Mechanics, 2018, 39(10): 1099-1114. |
[25] | 郭建春, 赵志红, 路千里, 等. 深层页岩缝网压裂关键力学理论研究进展[J]. 天然气工业, 2021, 41(1): 102-117. |
[25] | GUO Jianchun, ZHAO Zhihong, LU Qianli, et al. Research progress in key mechanical theories of deep shale network fracturing[J]. Natural Gas Industry, 2021, 41(1): 102-117. |
[26] | 赵金洲, 尹庆, 李勇明. 中国页岩气藏压裂的关键科学问题[J]. 中国科学: 物理学、力学、天文学, 2017, 47(11): 19-32. |
[26] | ZHAO Jinzhou, YIN Qing, LI Yongming. Key scientific issues of hydraulic fracturing in Chinese shale gas reservoir[J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2017, 47(11): 19-32. |
[27] | 朱海燕, 宋宇家, 唐煊赫, 等. 页岩气藏加密井压裂时机优化——以四川盆地涪陵页岩气田X1井组为例[J]. 天然气工业, 2021, 41(1): 15-28. |
[27] | ZHU Haiyan, SONG Yujia, TANG Xuanhe, et al. Optimization of fracturing timing of infill wells in shale gas reservoirs: A case study on Well Group X1 of Fuling Shale Gas Field in the Sichuan Basin[J]. Natural Gas Industry, 2021, 41(1): 154-168. |
[28] | 易良平, 杨长鑫, 杨兆中, 等. 天然裂缝带对深层页岩压裂裂缝扩展的影响规律[J]. 天然气工业, 2022, 42(10): 84-97. |
[28] | YI Liangping, YANG Changxin, YANG Zhaozhong, et al. Influence of natural fracture zones on the propagation of hydraulic fractures in deep shale[J]. Natural Gas Industry, 2022, 42(10): 84-97. |
[29] | ZHOU T, WANG H B, LI F X, et al. Numerical simulation of hydraulic fracture propagation in laminated shale reservoirs[J]. Petroleum Exploration and Development, 2020, 47(5): 1039-1051. |
[30] | 薛仁江, 郭建春, 赵志红, 等. 济阳拗陷页岩储层水平井裂缝扩展数值模拟[J]. 西南石油大学学报(自然科学版), 2019, 41(2): 84-96. |
[30] | XUE Renjiang, GUO Jianchun, ZHAO Zhihong, et al. Numerical simulation of fracture propagation in horizontal wells of shale reservoirs in Jiyang Depression[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2019, 41(2): 84-96. |
[31] | 张丰收, 吴建发, 黄浩勇, 等. 提高深层页岩裂缝扩展复杂程度的工艺参数优化[J]. 天然气工业, 2021, 41(1): 125-135. |
[31] | ZHANG Fengshou, WU Jianfa, HUANG Haoyong, et al. Technological parameter optimization for improving the complexity of hydraulic fractures in deep shale reservoirs[J]. Natural Gas Industry, 2021, 41(1): 125-135. |
[32] | 刘尧文. 复杂构造区深层页岩气藏射孔参数优化及应用——以涪陵页岩气田白马区块为例[J]. 天然气工业, 2021, 41(1): 136-145. |
[32] | LIU Yaowen. Optimization of application of perforation parameters of deep shale gas reservoirs in complex structural areas: A case study of the Baima Block of Fuling Shale Gas Field[J]. Natural Gas Industry, 2021, 41(1): 136-145. |
[33] | 刘合, 孟思炜, 苏健, 等. 对中国页岩气压裂工程技术发展和工程管理的思考与建议[J]. 天然气工业, 2019, 39(4): 1-7. |
[33] | LIU He, MENG Siwei, SU Jian, et al. Reflections and suggestions on the development and engineering management of shale gas fracturing technology in China[J]. Natural Gas Industry, 2019, 39(4): 1-7. |
[34] | 张烈辉, 胡勇, 李小刚, 等. 四川盆地天然气开发历程与关键技术进展[J]. 天然气工业, 2021, 41(12): 60-72. |
[34] | ZHANG Liehui, HU Yong, LI Xiaogang, et al. History and key technological progress of natural gas development in the Sichuan Basin[J]. Natural Gas Industry, 2021, 41(12): 60-72. |
[35] | 张烈辉, 何骁, 李小刚, 等. 四川盆地页岩气勘探开发进展、挑战及对策[J]. 天然气工业, 2021, 41(8): 143-152. |
[35] | ZHANG Liehui, HE Xiao, LI Xiaogang, et al. Shale gas exploration and development in the Sichuan Basin: Progress, challenge and countermeasures[J]. Natural Gas Industry, 2021, 41(8): 143-152. |
[36] | 张寻, 沈骋. 页岩气压裂工艺崛起之路——川南页岩气压裂工艺2.0技术发展透视[N]. 中国石油报, 2022-02-10(4). |
[36] | ZHANG Xun, SHEN Cheng. The way to rise of shale gas fracturing technology: Perspective on the development of shale gas fracturing technology 2.0 in southern Sichuan[N]. China Petroleum Daily, 2022-02-10(4). |
[37] | 赵志恒, 郑有成, 范宇, 等. 页岩储集层水平井段内多簇压裂技术应用现状及认识[J]. 新疆石油地质, 2020, 41(4): 499-504. |
[37] | ZHAO Zhiheng, ZHENG Youcheng, FAN Yu, et al. Application and cognition of multi-cluster fracturing technology in horizontal wells in shale reservoirs[J]. Xinjiang Petroleum Geology, 2020, 41(4): 499-504. |
[38] | 郑有成, 范宇, 雍锐, 等. 页岩气密切割分段+高强度加砂压裂新工艺[J]. 天然气工业, 2019, 39(10): 76-81. |
[38] | ZHENG Youcheng, FAN Yu, YONG Rui, et al. A new fracturing technology of intensive stage+high intensity proppant injection for shale gas reservoirs[J]. Natural Gas Industry, 2019, 39(10): 76-81. |
[39] | 曹学军, 王明贵, 康杰, 等. 四川盆地威荣区块深层页岩气水平井压裂改造工艺[J]. 天然气工业, 2019, 39(7): 81-87. |
[39] | CAO Xuejun, WANG Minggui, KANG Jie, et al. Fracturing technologies of deep shale gas horizontal wells in the Weirong Block, southern Sichuan Basin[J]. Natural Gas Industry, 2019, 39(7): 81-87. |
[40] | 赵金洲, 任岚, 蒋廷学, 等. 中国页岩气压裂十年: 回顾与展望[J]. 天然气工业, 2021, 41(8): 121-142. |
[40] | ZHAO Jinzhou, REN Lan, JIANG Tingxue, et al. Ten years of gas shale fracturing in China: Review and prospect[J]. Natural Gas Industry, 2021, 41(8): 121-142. |
[41] | 谢南星, 蔡道钢, 叶长青, 等. 页岩气水平井生产压降计算新模型[J]. 钻采工艺, 2022, 45(1): 75-80. |
[41] | XIE Nanxing, CAI Daogang, YE Changqing, et al. New production pressure drop calculation model for shale gas horizontal well[J]. Drilling & Production Technology, 2022, 45(1): 75-80. |
[42] | 陈钊, 王天一, 姜馨淳, 等. 页岩气水平井段内多簇压裂暂堵技术的数值模拟研究及先导实验[J]. 天然气工业, 2021, 41(增刊1): 158-163. |
[42] | CHEN Zhao, WANG Tianyi, JIANG Xinchun, et al. Numerical simulation study and pilot test of multi-cluster fracturing and temporary plugging technology in the horizontal hole section of shale-gas horizontal wells[J]. Natural Gas Industry, 2021, 41 (suppl.1): 158-163. |
[43] | 李彦超, 张庆, 沈建国, 等. 页岩气藏长段多簇暂堵体积改造技术[J]. 天然气工业, 2022, 42(2): 143-150. |
[43] | LI Yanchao, ZHANG Qing, SHEN Jianguo, et al. Volumetric stimulation technology of long-section multi-cluster temporary plugging in shale gas reservoirs[J]. Natural Gas Industry, 2022, 42(2): 143-150. |
[44] | MA X H. “Extreme utilization” development theory of unconventional natural gas[J]. Petroleum Exploration and Development, 2021, 48(2): 326-336. |
[45] | 高健. 四川盆地威远区块页岩气立体开发技术与对策——以威202井区A平台为例[J]. 天然气工业, 2022, 42(2): 93-99. |
[45] | GAO Jian. Three-dimensional development technologies and countermeasures for shale gas in Weiyuan Block of the Sichuan Basin: A case study on Wei 202A Platform[J]. Natural Gas Industry, 2022, 42(2): 93-99. |
[46] | 邹才能, 赵群, 丛连铸, 等. 中国页岩气开发进展、潜力及前景[J]. 天然气工业, 2021, 41(1): 1-14. |
[46] | ZOU Caineng, ZHAO Qun, CONG Lianzhu, et al. Development progress, potential and prospect of shale gas in China[J]. Natural Gas Industry, 2021, 41(1): 1-14. |
[47] | 胡东风, 任岚, 李真祥, 等. 深层超深层页岩气水平井缝口暂堵压裂的裂缝调控模拟[J]. 天然气工业, 2022, 42(2): 50-58. |
[47] | HU Dongfeng, REN Lan, LI Zhenxiang, et al. Simulation of fracture control during fracture-opening temporary plugging fracturing of deep/ultra deep shale-gas horizontal wells[J]. Natural Gas Industry, 2022, 42(2): 50-58. |
[48] | 杨兆中, 高晨轩, 李小刚, 等. 前置液阶段的支撑剂段塞降低页岩储层压裂摩阻实验研究[J]. 油气藏评价与开发, 2020, 10(1): 77-83. |
[48] | YANG Zhaozhong, GAO Chenxuan, LI Xiaogang, et al. Laboratory study on reducing fracturing friction of shale reservoir by proppant slug during pad[J]. Petroleum Reservoir Evaluation and Development, 2020, 10(1): 77-83. |
[49] | ROBERTS G, LILLY T B, TYMONS T R. Improved well stimulation through the application of downhole video analytics[C]// Paper SPE-189851-MS presented at the SPE Hydraulic Fracturing Technology Conference and Exhibition, The Woodlands, Texas, USA, January 2018. |
[50] | XU C Y, YAN X P, KANG Y L, et al. Structural failure mechanism and strengthening method of plugging zone in deep naturally fractured reservoirs[J]. Petroleum Exploration and Development, 2020, 47(2): 399-408. |
[51] | 郭建春, 周航宇, 唐堂, 等. 非常规储层压裂支撑剂输送实验及数值模拟研究进展[J]. 钻采工艺, 2022, 45(3): 48-54. |
[51] | GUO Jianchun, ZHOU Hangyu, TANG Tang, et al. Advances of experiment and numerical simulation researches on proppant transport for unconventional reservoir fracturing[J]. Drilling & Production Technology, 2022, 45(3): 48-54. |
[52] | 高金剑, 胡蓝霄, 王刚. 非常规储层压裂砂比对支撑剂铺置质量影响的实验研究[J]. 钻采工艺, 2022, 45(6): 90-95. |
[52] | GAO Jinjian, HU Lanxiao, WANG Gang. Experimental study on the effect of fracturing sand ratio on proppant placement in unconventional reservoirs[J]. Drilling & Production Technology, 2022, 45(6): 90-95. |
[53] | 赵传峰, 曹博文, 肖月, 等. 支撑剂铺置模式及其对水力裂缝导流能力的影响规律[J]. 科学技术与工程, 2021, 21(19): 7997-8004. |
[53] | ZHAO Chuanfeng, CAO Bowen, XIAO Yue, et al. Packing modes of proppants and influence on hydraulic fracture conductivity[J]. Science Technology and Engineering, 2021, 21(19): 7997-8004. |
[54] | 李勇明, 程垒明, 周文武. 考虑支撑剂变形的压后支撑缝宽预测新模型[J]. 科学技术与工程, 2018, 18(6): 107-113. |
[54] | LI Yongming, CHENG Leiming, ZHOU Wenwu. A new prediction model of propped fracture width considering proppant deformation[J]. Science Technology and Engineering, 2018, 18(6): 107-113. |
[55] | CHEN M, ZHANG S C, LIU M, et al. Calculation method of proppant embedment depth in hydraulic fracturing[J]. Petroleum Exploration and Development, 2018, 45(1): 149-156. |
[56] | 侯腾飞. 页岩储层复杂裂缝支撑剂非均匀分布规律及导流能力研究[D]. 北京: 中国石油大学(北京), 2018. |
[56] | HOU Tengfei. Research on the proppant uneven distribution and conductivity of complex fracture network in shale gas reservoir[D]. Beijing: China University of Petroleum(Beijing), 2018. |
[57] | 郝丽华. 复杂裂缝内支撑剂沉降运移规律研究[D]. 青岛: 中国石油大学(华东), 2018. |
[57] | HAO Lihua. Research on the law of proppant settlement and migration in complex fracture[D]. Qingdao: China University of Petroleum(East China), 2018. |
[58] | 任岚, 林辰, 林然, 等. 复杂裂缝中低密度支撑剂铺置数值模拟[J]. 大庆石油地质与开发, 2021, 40(6): 52-61. |
[58] | REN Lan, LIN Chen, LIN Ran, et al. Numerical simulation of low-density proppant placement in complex fractures[J]. Daqing Petroleum Geology and Development, 2021, 40(6): 52-61. |
[59] | 沈云琦, 李凤霞, 张岩, 等. 复杂裂缝网络内支撑剂运移及铺置规律分析[J]. 油气地质与采收率, 2020, 27(5): 134-142. |
[59] | SHEN Yunqi, LI Fengxia, ZHANG Yan, et al. Analysis of prop-pant migration and layout in complex fracture network[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(5): 134-142. |
[60] | 刘平礼, 李珍明, 宋雨纯, 等. 通道压裂过程中主裂缝支撑剂铺置影响因素实验研究[J]. 油气藏评价与开发, 2018, 8(5): 42-47. |
[60] | LIU Pingli, LI Zhenming, SONG Yuchun, et al. Experimental study on influence factors of proppant placement in main fracture of channel fracturing process[J]. Petroleum Reservoir Evaluation and Development, 2018, 8(5): 42-47. |
[61] | 金萍, 王献, 张尚明, 等. 致密砂岩油藏高速通道压裂裂缝导流能力影响因素分析[J]. 断块油气田, 2022, 29(2): 234-238. |
[61] | JIN Ping, WANG Xian, ZHANG Shangming, et al. Influencing factors of fracture conductivity in high-speed channel fracturing in tight sandstone reservoir[J]. Fault-Block Oil & Gas Field, 2022, 29(2): 234-238. |
[62] | 曹海涛, 詹国卫, 赵勇, 等. 川南深层页岩气藏支撑与自支撑裂缝导流能力对比[J]. 科学技术与工程, 2019, 19(33): 164-169. |
[62] | CAO Haitao, ZHAN Guowei, ZHAO Yong, et al. Comparative of conductivity between support fracture and self-support fracture of deep shale reservoir in southern Sichuan Basin[J]. Science Technology and Engineering, 2019, 19(33): 164-169. |
[63] | 梁天成, 才博, 蒙传幼, 等. 水力压裂支撑剂性能对导流能力的影响[J]. 断块油气田, 2021, 28(3): 403-407. |
[63] | LIANG Tiancheng, CAI Bo, MENG Chuanyou, et al. Effect of hydraulic fracturing prop-pant performance on conductivity[J]. Fault Block Oil and Gas Field, 2021, 28(3): 403-407. |
[64] | 毕文韬, 卢拥军, 蒙传幼, 等. 页岩储层支撑裂缝导流能力实验研究[J]. 断块油气田, 2016, 23(1): 133-136. |
[64] | BI Wentao, LU Yongjun, MENG Chuanyou, et al. Flow conductivity of propped fracture in shale formation[J]. Fault-Block Oil & Gas Field, 2016, 23(1): 133-136. |
[65] | 梁兴, 管彬, 李军龙, 等. 山地浅层页岩气地质工程一体化高效压裂试气技术——以昭通国家级页岩气示范区太阳气田为例[J]. 天然气工业, 2021, 41(增刊1): 124-132. |
[65] | LIANG Xing, GUAN Bin, LI Junlong, et al. Key technologies of shallow shale gas reservoir in mountainous area: Taking Taiyang gas field in Zhaotong national shale gas demonstration area as an example[J]. Natural Gas Industry, 2021, 41(suppl. 1): 124-132. |
[66] | 侯腾飞, 张士诚, 马新仿, 等. 支撑剂非均匀分布对页岩气井产能的影响[J]. 西安石油大学学报(自然科学版), 2017, 32(1): 75-82. |
[66] | HOU Tengfei, ZHANG Shicheng, MA Xinfang, et al. Influence of non uniform distribution of proppant on productivity of shale gas well[J]. Journal of Xi'an Shiyou University(Natural Science Edition), 2017, 32(1): 75-82. |
[67] | MELCHER H, MAYERHOFER M, AGARWAL K, et al. Shale frac designs move to just-good-enough proppant economics[C]// Paper SPE-199751-MS presented at the SPE Hydraulic Fracturing Technology Conference and Exhibition, The Woodlands, Texas, USA, February 2020. |
[68] | 杨兆中, 廖梓佳, 李小刚, 等. 非均布导流下页岩气藏压裂水平井产量模拟[J]. 西南石油大学学报(自然科学版), 2021, 43(3): 93-100. |
[68] | YANG Zhaozhong, LIAO Zijia, LI Xiaogang, et al. Production simulation of fractured horizontal well with non-uniform space distribution of fracture conductivity in shale gas reservoir[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(3): 93-100. |
/
〈 | 〉 |