油气藏评价与开发 >
2024 , Vol. 14 >Issue 4: 610 - 617
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2024.04.011
中国首个长期弃置深水油田二次开发技术创新与实践
收稿日期: 2023-11-14
网络出版日期: 2024-09-10
基金资助
中海石油(中国)有限公司重大科技专项“南海东部油田上产2 000万吨关键技术研究”(CNOOC-KJ-135-ZDXM37-SZ);中海石油(中国)有限公司综合科研项目“恩平18区疏松砂岩稠油油藏有效开发技术”(YXKY-2019-SZ-01)
Innovation and practice of secondary development technology for China’s first long-term abandoned deepwater oilfield
Received date: 2023-11-14
Online published: 2024-09-10
中国首个长期弃置的深水油田由于二次开发面临复杂的技术难题和较低的经济效益等问题,成为难以动用的边际油田。通过GGRP(地球物理-地质-油藏-生产)一体化技术研究与实践,盘活弃置油田,保障高产稳产。针对剩余油分布的不确定性、构造复杂、储层非均质及水下管汇限温等问题,克服了多项前沿技术难点。这些创新技术包括长期水驱关停油田的剩余油预测技术、复杂油藏的地质导向及精细描述技术、油藏管流耦合模型流动保障技术,成功指导了油田的二次开发,显著提升了油田的开发效果。结果表明:该油田初期产能跃居南海东部油田前三,实际含水上升趋势与方案设计基本一致,预计增加可采储量达259×104 m3。这一开拓性研究为长期弃置深水油田二次开发提供了宝贵的经验,该科技成果在同类油田的开发进程中有着广泛的应用前景。
文星 , 王坤 , 谢明英 , 冯沙沙 , 李黎 , 李威 . 中国首个长期弃置深水油田二次开发技术创新与实践[J]. 油气藏评价与开发, 2024 , 14(4) : 610 -617 . DOI: 10.13809/j.cnki.cn32-1825/te.2024.04.011
China’s first long-term abandoned deepwater oil field has become a marginal oil field that is difficult to exploit due to complex technical difficulties and low economic benefits faced by secondary development. Through the research and practice of GGRP (geophysics-geology-reservoir-production) integrated technology, abandoned oil fields are revitalized to ensure high and stable production. In order to cope with the challenges of uncertainty in the distribution of remaining oil, structural complexity, reservoir heterogeneity and temperature limitations of underwater manifolds, we have overcome a series of cutting-edge technical problems. These innovative technologies include remaining oil prediction technology for long-term water flooding shut-in oil fields, geological guidance and fine description technology for complex oil reservoirs, and reservoir pipe flow coupling model flow assurance technology. They have successfully guided the secondary development of oil fields and significantly improved improve the development effect of oil fields. The results show that the initial production capacity of the oil field has jumped to the top three oil fields in the eastern South China Sea. The actual water content rising trend is basically consistent with the plan design, and the increase in recoverable reserves is expected to reach 259×104 m3. This pioneering research provides valuable experience for the secondary development of long-term abandoned deepwater oil fields. This scientific and technological achievement has broad application prospects in the development of similar oil fields.
[1] | 李玉红, 常毓文, 吴向红, 等. 长期停产对油田开发规律的影响[J]. 西南石油大学学报(自然科学版), 2016, 38(4): 117-122. |
[1] | LI Yuhong, CHANG Yuwen, WU Xianghong, et al. The impact of long time shutdown on oilfield development discipline[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2016, 38(4): 117-122. |
[2] | 钟诚, 杜鹏, 刘自亮, 等. 碳中和与中国海洋油气发展的内在联结性[J]. 石油与天然气化工, 2023, 52(4): 32-40. |
[2] | ZHONG Cheng, DU Peng, LIU Ziliang, et al. Interconnection between carbon neutrality and development of offshore oil and gas in China[J]. Chemical Engineering of Oil & Gas, 2023, 52(4): 32-40. |
[3] | 李国艳, 常琳, 陈猛, 等. 考虑注水体积倍数及离子交换的水淹层剩余油评价方法[J]. 油气藏评价与开发, 2023, 13(6): 801-808. |
[3] | LI Guoyan, CHANG Lin, CHENG Meng, et al. Evaluation method of remaining oil in water-flooded formation considering injected-water volumes and ion exchange[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(6): 801-808. |
[4] | 杨冰, 傅强, 官敬涛, 等. 特高含水油藏不同井网流场调整模拟与驱油效率[J]. 油气藏评价与开发, 2023, 13(4): 519-524. |
[4] | YANG Bing, FU Qiang, GUAN Jintao, et al. Oil displacement efficiency based on different well pattern adjustment simulation in high water cut reservoirs[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 519-524. |
[5] | 张风义, 刘小鸿, 廖辉, 等. 海上油田多元热流体吞吐气窜调剖实验研究及应用[J]. 石油与天然气化工, 2023, 52(3): 87-91. |
[5] | ZHANG Fengyi, LIU Xiaohong, LIAO Hui, et al. Experimental research and application of profile control for gas channeling caused by multi-thermal fluid stimulation in offshore oil field[J]. Chemical Engineering of Oil & Gas, 2023, 52(3): 87-91. |
[6] | 全洪慧, 别旭伟, 谢岳, 等. 基于油水渗流规律分析油水界面深度差异主控因素:以渤海南堡35-2油田为例[J]. 中国海上油气, 2017, 29(6): 79-86. |
[6] | QUAN Honghui, BIE Xuwei, XIE Yue, et al. Main controlling factors analysis on depth difference of oil-water contact based on oil-water seepage: A case study of NB35-2 oilfield, Bohai sea[J]. China Offshore Oil and Gas, 2017, 29(6): 79-86. |
[7] | 陈明江, 刘俊海, 程亮. 强纵向非均质性油藏油水层识别及油水界面精细刻画[J]. 油气藏评价与开发, 2021, 11(3): 428-436. |
[7] | CHEN Mingjiang, LIU Junhai, CHENG Liang. Identification of fluid type and fine characterization of oil-water contact for an oil reservoir with strong vertical heterogeneity[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(3): 428-436. |
[8] | 赵文景, 王敬, 钱其豪, 等. 非均质油藏水驱优势渗流通道演化规律[J]. 断块油气田, 2023, 30(5): 847-857. |
[8] | ZHAO Wenjing, WANG Jing, QIAN Qihao, et al. Evolution law of dominant flow channels of water flooding in heterogeneous reservoir[J]. Fault-Block Oil & Gas Field, 2023, 30(5): 847-857. |
[9] | 李伟, 唐放, 侯博恒, 等. 基于神经网络的南海东部砂岩油藏采收率预测方法[J]. 油气藏评价与开发, 2021, 11(5): 730-735. |
[9] | LI Wei, TANG Fang, HOU Boheng, et al. A method for oil recovery prediction of sandstone reservoirs in the eastern South China Sea based on neural network[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(5): 730-735. |
[10] | 涂乙, 王亚会, 闫正和, 等. 基于构型单元“势控论”研究与剩余油开发效果分析[J]. 岩性油气藏, 2019, 31(4): 133-140. |
[10] | TU Yi, WANG Yahui, YAN Zhenghe, et al. Potential control theory based on configuration unit and remaining oil development effect[J]. Lithologic Reservoirs, 2019, 31(4): 133-140. |
[11] | 石广仁. 油气运聚定量模拟技术现状、问题及设想[J]. 石油与天然气地质, 2009, 30(1): 1-10. |
[11] | SHI Guangren. Status,problems and proposals of the quantitative modeling techniques for hydrocarbon migration and accumulation[J]. Oil & Gas Geology, 2009, 30(1): 1-10. |
[12] | 马康, 张荣达, 唐力辉, 等. 油水二次富集影响因素分析与预测模型[J]. 断块油气田, 2020, 27(2): 213-216. |
[12] | MA Kang, ZHANG Rongda, TANG Lihui, et al. Influence factors analysis and prediction model of secondary accumulation of oil and water[J]. Fault-Block Oil & Gas Field, 2020, 27(2): 213-216. |
[13] | 李传亮. 油水界面倾斜原因分析(续)[J]. 新疆石油地质, 2009, 30(5): 653-654. |
[13] | LI Chuanliang. Theoretical analysis of dipping water-oil contacts(Ⅱ)[J]. Xinjiang Petroleum Geology, 2009, 30(5): 653-654. |
[14] | 李伟, 李威, 闫正和, 等. 油田长期停产下的油水运聚平衡解析模型及剩余油分布[J]. 断块油气田, 2021, 28(2): 253-257. |
[14] | LI Wei, LI Wei, YAN Zhenghe, et al. Analytical model of oil-water migration&accumulation rebalance and remaining oil distribution of long-term shutdown oilfield[J]. Fault-Block Oil and Gas Field, 2021, 28(2): 253-257. |
[15] | 林昕, 苑仁国, 秦磊, 等. 地质导向钻井前探技术现状及进展[J]. 特种油气藏, 2021, 28(2): 1-10. |
[15] | LIN Xin, YUAN Renguo, QIN Lei, et al. Present situation and progress of geosteering drilling pre-prospecting technology[J]. Specialty Oil & Gas Reservoirs, 2021, 28(2): 1-10. |
[16] | 龙明, 徐怀民, 江同文, 等. 滨岸相碎屑岩储集层构型动态评价[J]. 石油勘探与开发, 2012, 39(6): 754-763. |
[16] | LONG Ming, XU Huaimin, JIANG Tongwen, et al. Performance evaluation for littoral-facies clastic reservoir architecture[J]. Petroleum Exploration and Development, 2012, 39(6): 754-763. |
[17] | 钟高明, 石磊, 赵向原, 等. 松辽盆地南部长岭断陷蚀变火山碎屑岩储层质量评价[J]. 天然气工业, 2023, 43(12): 25-36. |
[17] | ZHONG Gaoming, SHI Lei, ZHAO Xiangyuan, et al. Quality evaluation of altered volcaniclastic rock reservoirs in the Changling fault depression of the southern Songliao Basin[J]. Natural Gas Industry, 2023, 43(12): 25-36. |
[18] | 侯东梅, 赵秀娟, 汪巍, 等. 地下曲流河点坝砂体规模定量表征研究——以渤海C油田明化镇组为例[J]. 油气藏评价与开发, 2018, 8(3): 7-11. |
[18] | HOU Dongmei, ZHAO Xiujuan, WANG Wei, et al. Quantitative characterization research for point bar sand body of subsurface meandering river environment: Taking Minghua Formation of Bohai C Oilfield as an instance[J]. Reservoir Evaluation and Development, 2018, 8(3): 7-11. |
[19] | 李昌华, 张学龄, 杜小芸, 等. 基于卷积神经网络的井漏预测[J]. 实验室研究与探索, 2023, 42(5): 102-106. |
[19] | LI Changhua, ZHANG Xueling, DU Xiaoyun, et al. Well leakage prediction based on convolutional neural network[J]. Laboratory Research and Exploration, 2023, 42(5): 102-106. |
[20] | 王雪媛, 陈文峰, 鞠朋朋, 等. 基于 LedaFlow 的深水海管蜡沉积模拟分析[J]. 天然气与石油, 2022, 40(6): 25-29. |
[20] | WANG Xueyuan, CHEN Wenfeng, JU Pengpeng, et al. Simulation analysis on wax deposition in deepwater subsea pipeline based on LedaFlow software[J]. Natural Gas and Oil, 2022, 40(6): 25-29. |
[21] | 王靖怡. 多相流模拟软件在油气田生产中的对比应用[D]. 北京: 中国石油大学(北京), 2021. |
[21] | WANG Jingyi. Comparative application of multiphase flow simulation softwares in oil and gas field production[D]. Beijing: China University of Petroleum(Beijing), 2021. |
[22] | 宋尚飞, 史博会, 兰文萍, 等. 多相混输管道水合物流动的LedaFlow软件模拟[J]. 油气储运, 2019, 38(6): 655-661. |
[22] | SONG Shangfei, SHI Bohui, LAN Wenping, et al. Flow simulation of hydrate in multiphase pipeline by LedaFlow software[J]. Oil & Gas Storage and Transportation, 2019, 38(6): 655-661. |
[23] | 杨可嘉. 多相流模拟软件LedaFlow与OLGA的对比分析研究[D]. 北京: 中国石油大学(北京), 2018. |
[23] | YANG Kejia. Comparison of multiphase flow simulators OLGA and LedaFlow[D]. Beijing: China University of Petroleum(Beijing), 2018. |
[24] | 陈宏举, 王靖怡, 康琦, 等. 多相管流模拟软件MPF与OLGA和LedaFlow预测能力对比[J]. 中国海上油气, 2022, 34(6): 168-176. |
[24] | CHEN Hongju, WANG Jingyi, KANG Qi, et al. Prediction ability comparison of multiphase pipe flow simulation software MPF, OLGA and LedaFlow[J]. China Offshore Oil and Gas, 2022, 34(6): 168-176. |
/
〈 | 〉 |