油气藏评价与开发 >
2024 , Vol. 14 >Issue 4: 629 - 637
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2024.04.013
深层煤岩气水平井压裂关键技术——以准噶尔盆地白家海地区侏罗系为例
收稿日期: 2023-10-11
网络出版日期: 2024-09-10
基金资助
中国石油科技项目“深层煤层气成藏理论与效益开发技术研究”(2023ZZ18)
Key technologies of horizontal well fracturing for deep coal-rock gas: A case study of Jurassic in Baijiahai area, Junggar Basin
Received date: 2023-10-11
Online published: 2024-09-10
目前准噶尔盆地白家海地区侏罗系煤层具有弹性模量低、泊松比高以及硬度低的特性,直井水力压裂过程中存在加砂困难和产气量低等问题。为此,确定了“验证+探索”的技术路线,现场验证簇间是否干扰,探索不同压裂液的增产效果。研究结果表明:①通过直井现场试验表明,优先选择煤层作为水平井钻进的目标层,可以获得更好的开发效果;②簇间距、排量、黏度、支撑剂粒径与加砂规模是解决加砂困难和改造体积的重要参数,建议采用大排量、高黏度和组合加砂的压裂工艺;③经现场应用,冻胶压裂液造长缝和水平井细分切割体积改造是实现准噶尔盆地白家海地区侏罗系深层煤岩气效益增产的有效工艺措施,并取得了显著效果。研究的成功为深层煤岩气的勘探和开发提供了技术上的突破和支持,对准噶尔盆地煤岩气资源开发具有重要意义。
李雪彬 , 金力新 , 陈超峰 , 俞天喜 , 向英杰 , 易多 . 深层煤岩气水平井压裂关键技术——以准噶尔盆地白家海地区侏罗系为例[J]. 油气藏评价与开发, 2024 , 14(4) : 629 -637 . DOI: 10.13809/j.cnki.cn32-1825/te.2024.04.013
The Jurassic coal seam in the Baijiahai area of the Junggar Basin is characterized by a low elastic modulus, high Poisson's ratio, and low hardness, presenting challenges in vertical well hydraulic fracturing such as difficulty in sanding and low gas production. To address these issues, a technical approach of “verification + exploration” was implemented. This involved on-site verification of cluster interference and exploration of the effects of different fracturing fluids on increasing production. Key findings from this approach include: ① Field Tests on Vertical Wells: It was observed that targeting coal seams as the preferred layer for horizontal well drilling could yield better development outcomes. ② Optimization of Fracturing Parameters: Important parameters that affect sanding difficulties and stimulation volume include cluster spacing, displacement, viscosity, proppant particle size, and sanding scale. A fracturing technology combining large displacement, high viscosity, and extensive sanding is recommended. ③ Field Application of Fracturing Fluids: The use of gel fracturing fluids for long fractures and the subdivision cutting volume transformation in horizontal wells have proven to be effective techniques. These processes have significantly enhanced the production benefits of deep Jurassic coal-rock gas in the Baijiahai area, achieving remarkable results. The success of this study provides a technical breakthrough and support for the exploration and development of deep coal-rock gas, holding significant implications for the development of coal-rock gas resources in the Junggar Basin.
[1] | 贾承造, 郑民, 张永峰. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发, 2012, 39(2): 129-136. |
[1] | JIA Chengzao, ZHENG Min, ZHANG Yongfeng. Unconventional hydrocarbon resources in China and the prospect of exploration and development[J]. Petroleum Exploration and Development, 2012, 39(2): 129-136. |
[2] | 徐凤银. 深部煤层气助力产业发展进入新阶段[J]. 石油知识, 2023(4): 4-6. |
[2] | XU Fengyin. The development of deep coalbed methane is entering a new stage, boosting the industry[J]. Petroleum Knowledge, 2023(4): 4-6. |
[3] | 张懿, 朱光辉, 郑求根, 等. 中国煤层气资源分布特征及勘探研究建议[J]. 非常规油气, 2022, 9(4): 1-8. |
[3] | ZHANG Yi, ZHU Guanghui, ZHENG Qiugen, et al. Distribution characteristics of coalbed methane resources in China and recommendations for exploration research[J]. Unconventional Oil & Gas, 2022, 9(4): 1-8. |
[4] | 蒋雪梅, 李晓红, 孙晓艳, 等. ISO天然气分析标准对煤层气分析的适应性研讨[J]. 石油与天然气化工, 2022, 51(2): 103-109. |
[4] | JIANG Xuemei, LI Xiaohong, SUN Xiaoyan, et al. Study on applicability of ISO natural gas analysis standards applied in coalbed methane analysis[J]. Chemical Engineering of Oil & Gas, 2022, 51(2): 103-109. |
[5] | 李国永, 姚艳斌, 王辉, 等. 鄂尔多斯盆地神木-佳县区块深部煤层气地质特征及勘探开发潜力[J]. 煤田地质与勘探, 2024, 52(2): 70-80. |
[5] | LI Guoyong, YAO Yanbin, WANG Hui, et al. Deep coalbed methane resources in the Shenmu-Jiaxian block, Ordos Basin, China: Geological characteristics and potential for exploration and exploitation[J]. Coal Geology & Exploration, 2024, 52(2): 70-80. |
[6] | 郭广山, 徐凤银, 刘丽芳, 等. 鄂尔多斯盆地府谷地区深部煤层气富集成藏规律及有利区评价[J]. 煤田地质与勘探, 2024, 52(2): 81-91. |
[6] | GUO Guangshan, XU Fengyin, LIU Lifang, et al. Enrichment and accumulation patterns and favorable area evaluation of deep coalbed methane in the Fugu area, Ordos Basin[J]. Coal Geology & Exploration, 2024, 52(2): 81-91. |
[7] | 胡秋嘉, 李梦溪, 贾慧敏, 等. 沁水盆地南部高煤阶煤层气水平井地质适应性探讨[J]. 煤炭学报, 2019, 44(4): 1178-1187. |
[7] | HU Qiujia, LI Mengxi, JIA Huimin, et al. Discussion of the geological adaptability of coal-bed methane horizontal wells of high-rank coal formation in southern Qinshui Basin[J]. Journal of China Coal Society, 2019, 44(4): 1178-1187. |
[8] | 杨秀春, 徐凤银, 王虹雅, 等. 鄂尔多斯盆地东缘煤层气勘探开发历程与启示[J]. 煤田地质与勘探, 2022, 50(3): 30-41. |
[8] | YANG Xiuchun, XU Fengyin, WANG Hongya, et al. Exploration and development process of coalbed methane in eastern margin of Ordos Basin and its enlightenment[J]. Coal Geology & Exploration, 2022, 50(3): 30-41. |
[9] | 徐凤银, 闫霞, 李曙光, 等. 鄂尔多斯盆地东缘深部(层)煤层气勘探开发理论技术难点与对策[J]. 煤田地质与勘探, 2023, 51(1): 115-130. |
[9] | XU Fengyin, YAN Xia, LI Shuguang, et al. Theoretical and technological difficulties and countermeasures of deep CBM exploration and development in the eastern edge of Ordos Basin[J]. Coal Geology & Exploration, 2023, 51(1): 115-130. |
[10] | 曾雯婷, 徐凤银, 张雷, 等. 鄂尔多斯盆地东缘深部煤层气排采工艺技术进展与启示[J]. 煤田地质与勘探, 2024, 52(2): 23-32. |
[10] | ZENG Wenting, XU Fengyin, ZHANG Lei, et al. Deep coalbed methane production technology for the eastern margin of the Ordos Basin: Advances and their implications[J]. Coal Geology & Exploration, 2024, 52(2): 23-32. |
[11] | 秦勇, 申建. 论深部煤层气基本地质问题[J]. 石油学报, 2016, 37(1): 125-136. |
[11] | QIN Yong, SHEN Jian. On the fundamental issues of deep coalbed methane geology[J]. Acta Petrolei Sinica, 2016, 37(1): 125-136. |
[12] | 郭绪杰, 支东明, 毛新军, 等. 准噶尔盆地煤岩气的勘探发现及意义[J]. 中国石油勘探, 2021, 26(6): 38-49. |
[12] | GUO Xujie, ZHI Dongming, MAO Xinjun, et al. Discovery and significance of coal measure gas in Junggar Basin[J]. China Petroleum Exploration, 2021, 26(6): 38-49. |
[13] | 叶建平, 侯淞译, 张守仁. “十三五”期间我国煤层气勘探开发进展及下一步勘探方向[J]. 煤田地质与勘探, 2022, 50(3): 15-22. |
[13] | YE Jianping, HOU Songyi, ZHANG Shouren. Progress of coalbed methane exploration and development in China during the 13th Five-Year Plan period and the next exploration direction[J]. Coal Geology & Exploration, 2022, 50(3): 15-22. |
[14] | 倪方杰. 白家海凸起深层煤层气压裂试气实践与认识[J]. 江汉石油职工大学学报, 2019, 32(5): 36-38. |
[14] | NI Fangjie. Practice and understanding of deep CBM fracturing gas testing in Baijiahai uplift[J]. Journal of Jianghan Petroleum University of Staff and Workers, 2019, 32(5): 36-38. |
[15] | 聂志宏, 徐凤银, 时小松, 等. 鄂尔多斯盆地东缘深部煤层气开发先导试验效果与启示[J]. 煤田地质与勘探, 2024, 52(2): 1-12. |
[15] | NIE Zhihong, XU Fengyin, SHI Xiaosong, et al. Outcomes and implications of pilot tests for deep coalbed methane production on the eastern margin of the Ordos Basin[J]. Coal Geology & Exploration, 2024, 52(2): 1-12. |
[16] | 桑树勋, 韩思杰, 周效志, 等. 华东地区深部煤层气资源与勘探开发前景[J]. 油气藏评价与开发, 2023, 13(4): 403-415. |
[16] | SANG Shuxun, HAN Sijie, ZHOU Xiaozhi, et al. Deep coalbed methane resource and its exploration and development prospect in East China[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 403-415. |
[17] | 苏育飞, 宋儒. 沁水盆地榆社武乡区块深部煤层气地质特征研究及可改造性评价[J]. 中国煤炭地质, 2023, 35(5): 46-57. |
[17] | SU Yufei, SONG Ru. Study on geological characteristics of deep CBM in Yushewu block, Qinshui Basin and evaluation of transformability[J]. Coal Geology of China, 2023, 35(5): 46-57. |
[18] | 李五忠, 孙斌, 孙钦平, 等. 以煤系天然气开发促进中国煤层气发展的对策分析[J]. 煤炭学报, 2016, 41(1): 67-71. |
[18] | LI Wuzhong, SUN Bin, SUN Qinping, et al. Analysis on coal-bed methane development based on coal measure gas in China and its countermeasure[J]. Journal of China Coal Society, 2016, 41(1): 67-71. |
[19] | 徐凤银, 侯伟, 熊先钺, 等. 中国煤层气产业现状与发展战略[J]. 石油勘探与开发, 2023, 50(4): 669-682. |
[19] | XU Fengyin, HOU Wei, XIONG Xianyue, et al. The status and development strategy of coalbed methane industry in China[J]. Petroleum Exploration and Development, 2023, 50(4): 669-682. |
[20] | 刘建忠, 朱光辉, 刘彦成, 等. 鄂尔多斯盆地东缘深部煤层气勘探突破及未来面临的挑战与对策——以临兴—神府区块为例[J]. 石油学报, 2023, 44(11): 1827-1839. |
[20] | LIU Jianzhong, Zhu Guanghui, LIU Yancheng, et al. Breakthrough, future challenges and countermeasures of deep coalbed methane in the eastern margin of Ordos Basin: A case study of Linxing-Shenfu block[J]. Acta Petrolei Sinica, 2023, 44(11): 1827-1839. |
[21] | 易良平, 胡滨, 李小刚, 等. 基于相场法的煤砂互层水力裂缝纵向延伸计算模型[J]. 煤炭学报, 2020, 45(增刊2): 706-716. |
[21] | YI Liangping, HU Bin, LI Xiaogang, et al. Calculation model of hydraulic crack vertical propagation in coal-sand interbedded formation based on the phase field method[J]. Journal of China Coal Society, 2020, 45(suppl. 2): 706-716. |
[22] | ZHOU S, ZHUANG X, RABCZUK T. Phase field method for quasi-static hydro-fracture in porous media under stress boundary condition considering the effect of initial stress field[J]. Theoretical and Applied Fracture Mechanics, 2020, 107: 102523. |
[23] | ZHOU S, ZHUANG X, RABCZUK T. A phase-field modeling approach of fracture propagation in poroelastic media[J]. Engineering Geology, 2018, 240: 189-203. |
[24] | 赵金洲, 彭瑀, 林啸, 等. 考虑复杂应力分布的数值缝宽计算模型及其应用[J]. 石油学报, 2016, 37(7): 914-920. |
[24] | ZHAO Jinzhou, PENG Yan, LIN Xiao, et al. Numerical fracture width model considering complex stress distribution and its application[J]. Acta Petrolei Sinica, 2016, 37(7): 914-920. |
[25] | 罗伟疆, 宁崇如, 黄凯. 煤层气压裂液研究现状及其展望[J]. 中国煤层气, 2023, 20(3): 30-35. |
[25] | LUO Weijiang, NING Chongru, HUANG Kai. Current situation and prospect of research on coalbed methane fracturing fluid[J]. China Coalbed Methane, 2023, 20(3): 30-35. |
[26] | 张亚东, 吴文刚, 敬显武, 等. 适用于致密气藏的可变黏压裂液体系性能评价及现场应用[J]. 石油与天然气化工, 2022, 51(1): 73-77. |
[26] | ZHANG Yadong, WU Wengang, JING Xianwu, et al. Performance evaluation and field application of variable viscosity fracturing fluid system for tight gas reservoir[J]. Chemical Engineering of Oil & Gas, 2022, 51(1): 73-77. |
[27] | 向超, 陈力力, 徐莹莹, 等. 一种新型压裂液纳米助排剂的研制及性能评价[J]. 石油与天然气化工, 2022, 51(3): 71-75. |
[27] | XIANG Chao, CHEN Lili, XU Yingying, et al. Development and performance evaluation of a new nano-drainage aid for fracturing fluid[J]. Chemical Engineering of Oil & Gas, 2022, 51(3): 71-75. |
[28] | 陈天, 易远元, 李甜甜, 等. 中国煤层气勘探开发现状及关键技术展望[J]. 现代化工, 2023, 43(9): 6-10. |
[28] | CHEN Tian, YI Yuanyuan, LI Tiantian, et al. Current situation of CBM exploration and development in China and prospects on key technologies[J]. Modern Chemical Industry, 2023, 43(9): 6-10. |
[29] | 刘剑辉. 吐哈油田煤层气压裂新技术探索及应用[J]. 西部探矿工程, 2018, 30(3): 28-31. |
[29] | LIU Jianhui. Exploration and application of new fracturing technologies in Tuha Oilfield's coalbed methane[J]. West-China Exploration Engineering, 2018, 30(3): 28-31. |
[30] | 李小刚, 舒鸫锟, 张平, 等. 煤层压裂缝内支撑剂输送物理模拟研究[J]. 油气藏评价与开发, 2020, 10(4): 39-44. |
[30] | LI Xiaogang, SHU Dongkun, ZHANG Ping, et al. Physical simulation of proppant transportation in artificial fractures of coal seam[J]. Petroleum Reservoir Evaluation and Development, 2020, 10(4): 39-44. |
[31] | 徐宝恒, 郭大立. 大规模缝网压裂在深部煤层气中的应用[J]. 河南科技, 2023, 42(19): 81-84. |
[31] | XU Baoheng, GUO Dali. Application of large-scale fracture network fracturing in deep coalbed methane[J]. Henan Science and Technology, 2023, 42(19): 81-84. |
/
〈 | 〉 |