综合研究

基于数据和知识双驱动的储气库地面管道腐蚀风险评价

  • 毕彩霞
展开
  • 中国石化石油勘探开发研究院,北京 102206
毕彩霞(1971—),女,硕士,高级工程师,主要从事油气田设备完整性管理及评价技术、安全工程技术研究工作。地址:北京市昌平区百沙路197号中国石化科学技术研究中心,邮政编码:102206。E-mail:sinopec_bicx@126.com

收稿日期: 2024-05-13

  网络出版日期: 2024-09-10

基金资助

中国石化科技项目“复杂地质条件地下储气库建库及安全高效运行技术研究”(P21024)

A corrosion risk assessment method for underground gas storage ground pipeline based on data and knowledge dual drivers

  • Caixia BI
Expand
  • Sinopec Petroleum Exploration and Production Research Institute, Beijing 102206, China

Received date: 2024-05-13

  Online published: 2024-09-10

摘要

储气库设备繁多,工艺流程复杂,风险因素众多,对其进行风险分析与评价的研究与应用尤为重要。近年来,储气库地面工艺管道腐蚀失效事故频发,准确有效地分析储气库地面工艺管道腐蚀失效的原因对其安全运行至关重要。采用数据和知识融合双驱动的风险评价方法,首先,对储气库地面工艺管道腐蚀失效数据进行统计分析,并建立贝叶斯腐蚀预测模型,在此基础上分析导致储气库地面工艺管道腐蚀失效的基本事件。其次,建立了腐蚀失效的知识模型,利用储气库地面工艺管道的腐蚀失效故障树详细分析了导致腐蚀失效的原因。通过各个基本事件的结构重要度系数,确定了各个基本事件在故障树结构上的重要性。最后,将储气库地面工艺管道腐蚀失效的影响因素总结为四大类,生成判断矩阵并确定不同影响因素的相对权重值,为模糊综合评价中权重因子的确定提供依据,得出储气库地面工艺管道腐蚀失效的风险级别。通过储气库地面工艺管道腐蚀风险评价实例应用,研究可为储气库的安全管理与运行提供科学依据。

本文引用格式

毕彩霞 . 基于数据和知识双驱动的储气库地面管道腐蚀风险评价[J]. 油气藏评价与开发, 2024 , 14(4) : 657 -666 . DOI: 10.13809/j.cnki.cn32-1825/te.2024.04.016

Abstract

The research and application of risk analysis and evaluation for underground gas storage facilities are critical due to their diverse equipment, complex process flows, and numerous risk factors. In particular, corrosion failure accidents in ground process pipelines at these facilities have become increasingly common in recent years. Effective and accurate analysis of the causes of these corrosion failures is essential for ensuring the safe operation of underground gas storage facilities. This article presents a risk assessment methodology that leverages data and knowledge fusion. The process begins with a statistical analysis of the corrosion failure data from ground process pipelines in underground gas storage facilities, from which a Bayesian corrosion prediction model is developed. This model serves as the foundation for analyzing the basic events that lead to corrosion failure in these pipelines. Subsequently, a knowledge model of corrosion failure is established, and a detailed analysis of corrosion causes is conducted using the fault tree specific to corrosion failure in ground process pipelines. The importance of each basic event within the fault tree is quantified through the structural importance coefficient assigned to each event. The analysis categorizes the influencing factors of corrosion failure into four main groups. A judgment matrix is then created to determine the relative weight values of these different influencing factors. This matrix is crucial for setting the weight factors in the fuzzy comprehensive evaluation, which ultimately determines the risk level of corrosion failure in ground process pipelines at underground gas storage facilities. By applying examples of corrosion risk assessments for ground process pipelines, this study provides a scientific basis for enhancing safety management and operational practices at underground gas storage facilities.

参考文献

[1] 糜利栋, 曾大乾, 刘华, 等. 天然气地下储气库智能化建设关键技术及其发展趋势[J]. 石油与天然气地质, 2024, 45(2): 581-592.
[1] MI Lidong, ZENG Daqian, LIU Hua, et al. Key technologies and development trends for intelligent construction of underground gas storage facilities[J]. Oil & Gas Geology, 2024, 45(2): 581-592.
[2] LIU Y M, TAN X, BAO Y Q. Machine learning-assisted intelligent interpretation of distributed fiber optic sensor data for automated monitoring of pipeline corrosion[J]. Measurement, 2024, 226: 114190.
[3] 糜利栋, 曾大乾, 刘华, 等. 中国石化地下储气库一体化综合平台研发与应用[J]. 油气藏评价与开发, 2023, 13(6): 781-788.
[3] MI Lidong, ZENG Daqian, LIU Hua, et al. Development and application of Sinopec integrated management platform for underground gas storage[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(6): 781-788.
[4] 糜利栋, 曾大乾, 李遵照, 等. 中国石化地下储气库智能化建设进展及展望[J]. 世界石油工业, 2023, 30(6): 88-95.
[4] MI Lidong, ZENG Daqian, LI Zunzhao, et al. Progress and prospect of intelligent of Sinopec underground gas storage[J]. World Petroleum Industry, 2023, 30(6): 88-95.
[5] 骆正山, 宁清云, 骆济豪. 盐岩储气库稳定性评估模型与应用研究[J]. 智能计算机与应用, 2024, 14(1): 43-48.
[5] LUO Zhengshan, NING Qingyun, LUO Jihao. Stability assessment of gas storage reservoirs based on integrated assignment-efficacy factor[J]. Intelligent Computer and Applications, 2024, 14(1): 43-48.
[6] XUE T F, SHI X L, WANG G B, et al. Study on repairing technical parameters of irregular gas storage salt caverns[J]. Energy, 2024, 293: 130484.
[7] LI F Q, LI F F, SUN R, et al. A study on the transient response of compressed air energy storage in the interaction between gas storage chambers and horseshoe-shaped tunnels in an abandoned coal mine[J]. Energies, 2024, 17(4): 953.
[8] 李娟, 陈莉, 顾晓敏. 油田集输管道腐蚀特性及防腐技术研究[J]. 化学工程师, 2024, 38(2): 51-54.
[8] LI Juan, CHEN Li, GU Xiaomin. Research on corrosion characteristics and anticorrosion technology of oilfield gathering and transportation pipeline[J]. Chemical Engineer, 2024, 38(2): 51-54.
[9] 骆正山, 于瑶如, 骆济豪, 等. 基于IAOA-KELM的储气库注采管柱内腐蚀速率预测[J]. 安全与环境学报, 2024, 24(3): 971-977.
[9] LUO Zhengshan, YU Yaoru, LUO Jihao, et al. Prediction of corrosion rate in gas storage injection-production string based on IAOA-KELM[J]. Journal of Safety and Environment, 2024, 24(3): 971-977.
[10] 黄剑华, 赵春, 赵建国. 油气藏型储气库CO2腐蚀防护技术研究[J]. 油气田地面工程, 2024, 43(3): 76-81.
[10] HUANG Jianhua, ZHAO Chun, ZHAO Jianguo. Research on CO2 corrosion protection technology of oil and gas reservoir type gas storage[J]. Oil-Gasfield Surface Engineering, 2024, 43(3): 76-81.
[11] 康健, 王雨涛, 张璐, 等. 基于层次筛选的风险评价方法在油气集输系统中的应用[J]. 北京石油化工学院学报, 2017, 25(1): 46-50.
[11] KANG Jian, WANG Yutao, ZHANG Lu, et al. Research on risk evaluation on oil gas gathering and transportation system based on multi-layer risk factors screening[J]. Journal of Beijing Institute of Petrochemical Technology, 2017, 25(1): 46-50.
[12] 孙晓宇. 基于FCE-RAM的油气集输系统风险条块结合评定方法研究[J]. 北京石油化工学院学报, 2017, 25(4): 45-50.
[12] SUN Xiaoyu. Risk grade evaluation on oil & gas gathering and transportation system based on fuzzy comprehensive evaluation and risk assessment matrix[J]. Journal of Beijing Institute of Petrochemical Technology, 2017, 25(4): 45-50.
[13] ZHANG G Q, ZHU S N, ZENG D Q, et al. Sealing capacity evaluation of underground gas storage under intricate geological conditions[J]. Energy Geoscience, 2024, 5(3): 100292.
[14] SOLEIMANI M, SHAHBEIGI S, ESFAHANI N M. A Bayesian network development methodology for fault analysis; case study of the automotive after treatment system[J]. Mechanical Systems and Signal Processing, 2024, 216: 111459.
[15] XU L, WANG Y F, MO L, et al. The research progress and prospect of data mining methods on corrosion prediction of oil and gas pipelines[J]. Engineering Failure Analysis, 2023, 144: 106951.
[16] 刘毅璠, 闫怡飞, 宋运存, 等. 储气库套管柱环空压力影响因素动态评价[J]. 石油管材与仪器, 2022, 8(5): 51-56.
[16] LIU Yipan, YAN Yifei, SONG Yuncun, et al. Risk assessment of annular pressure buildup in natural gas storage[J]. Petroleum Instruments, 2022, 8(5): 51-56.
[17] BIGDELI F, JAVIDI M, PAKSHIR M, et al. Risk assessment of the corrosion resistance performances for epoxy coatings under drilling environments using AHP method[J]. International Journal of Pressure Vessels and Piping, 2021, 193: 104470.
文章导航

/