油气勘探

陆相咸化湖盆“低TOC”烃源岩高生烃效率探讨——以苏北盆地溱潼凹陷阜宁组二段泥页岩为例

  • 高玉巧 ,
  • 何希鹏 ,
  • 程熊 ,
  • 唐玄 ,
  • 花彩霞 ,
  • 昝灵 ,
  • 张培先 ,
  • 陈学武 ,
  • 庞伊伟
展开
  • 1.中国石化华东油气分公司,江苏 南京 210000
    2.中国地质大学(北京)能源学院,北京 100083
高玉巧(1978—),女,博士,教授级高级工程师,从事页岩油气勘探开发研究。地址:江苏省南京市建邺区江东中路375号金融城9号楼,邮政编码:210000。E-mail:gaoyq.hdsj@sinopec.com
程熊(1989—),男,博士,副教授,从事油气地球化学、油气成藏研究。地址:北京市海淀区学院路29号,邮政编码:100083。E-mail:xcheng2015@cugb.edu.cn

收稿日期: 2023-12-06

  网络出版日期: 2024-10-11

基金资助

中国石化科技项目“溱潼凹陷低 TOC 陆相页岩油勘探开发关键技术”(P23190);国家自然科学基金青年科学基金项目“火山活动的分子地球化学响应与有机质富集机制——以上寺剖面大隆组为例”(42302189);国家自然科学基金面上项目“超临界CO2与陆相干酪根-油-水体系的相互作用机理研究”(42372164)

Discussion on high hydrocarbon generation efficiency of saline lacustrine source rocks with low TOC: A case study of the second member of Funing Formation, Qintong Sag, Subei Basin

  • GAO Yuqiao ,
  • HE Xipeng ,
  • CHENG Xiong ,
  • TANG Xuan ,
  • HUA Caixia ,
  • ZAN Ling ,
  • ZHANG Peixian ,
  • CHEN Xuewu ,
  • PANG Yiwei
Expand
  • 1. Sinopec East China Oil & Gas Company, Nanjing, Jiangsu 210000, China
    2. School of Energy Resource, China University of Geosciences(Beijing), Beijing 100083, China

Received date: 2023-12-06

  Online published: 2024-10-11

摘要

苏北盆地溱潼凹陷阜宁组二段(以下简称阜二段)页岩油勘探取得重大突破,但其泥页岩总有机碳含量(TOC)普遍不高,一般低于2%。业界认为陆相咸化湖盆“低TOC”烃源岩能生成大量油气,称之为陆相咸化湖盆的“低TOC”高效生烃模式。由于生排烃效应,烃源岩的TOC会降低,因此,恢复烃源岩原始TOC对客观认识烃源岩的生烃能力、油气资源评价和持续增储上产具有重要意义。以溱潼凹陷典型钻井阜二段泥页岩为研究对象,利用生烃模拟实验和岩石热解资料,采用热模拟TOC演化、有效碳(PC)演化和元素质量守恒法,对QY1井阜二段泥页岩TOC进行了恢复。结果表明:咸化湖盆烃源岩的TOC恢复系数最高可达3~4,且受到岩相的重要影响。随着热演化程度增高,TOC恢复系数增大,纹层状页岩TOC恢复系数高于块状泥岩,QY1井阜二段Ⅳ亚段泥岩、Ⅰ—Ⅲ亚段页岩TOC恢复系数可分别高达1.1~1.5、1.5~3.0。母质类型和生烃活化能的差异导致页岩成烃转化率和TOC恢复系数高于泥岩。

本文引用格式

高玉巧 , 何希鹏 , 程熊 , 唐玄 , 花彩霞 , 昝灵 , 张培先 , 陈学武 , 庞伊伟 . 陆相咸化湖盆“低TOC”烃源岩高生烃效率探讨——以苏北盆地溱潼凹陷阜宁组二段泥页岩为例[J]. 油气藏评价与开发, 2024 , 14(5) : 678 -687 . DOI: 10.13809/j.cnki.cn32-1825/te.2024.05.002

Abstract

Significant progress has been made in shale oil exploration within the second member of the Funing Formation in the Qintong Sag, Subei Basin. However, geologists have noted that the measured Total Organic Carbon(TOC) contents are generally below 2%. Despite this, it is believed that source rocks in saline lacustrine basins can generate substantial amounts of petroleum even with low organic matter abundance, a concept known as the “low TOC” and highly efficient hydrocarbon generation mode of saline lacustrine source rocks. As hydrocarbon generation and expulsion occur during thermal maturation, the TOC levels in source rocks decrease. Therefore, accurately restoring the original TOC of these source rocks is crucial for a proper understanding of their hydrocarbon generation capacity, as well as for evaluating petroleum resources and supporting reserve growth and production enhancement. This study focuses on the typical mudstones and shales of the second member of the Funing Formation in the Qintong Sag. Techniques such as hydrocarbon generation simulation experiments, rock pyrolysis data, TOC and productive carbon content evolution during thermal simulation, and an element mass conservation method were employed to restore the original TOC of these mudstones and shales. The findings reveal that the TOC recovery coefficient of these saline source rocks can exceed values between 3 to 4, and this coefficient is significantly influenced by the lithology. The study found that: the TOC recovery coefficient increases with thermal maturity, the coefficient for laminated shale is higher than that for massive mudstone, and the TOC recovery coefficients for mudstones in the Ⅳ sub-member and shales in the Ⅰ to Ⅲ sub-members of the second member of the Funing Formation range from 1.1~1.5 and 1.5~3.0, respectively. These variations are attributed to differences in the type of organic matter and the hydrocarbon generating activation energy, leading to a higher hydrocarbon transformation rate and TOC recovery coefficient in shales compared to mudstones.

参考文献

[1] 姚红生, 云露, 昝灵, 等. 苏北盆地溱潼凹陷阜二段断块型页岩油定向井开发模式及实践[J]. 油气藏评价与开发, 2023, 13(2): 141-151.
  YAO Hongsheng, YUN Lu, ZAN Ling, et al. Development mode and practice of fault-block oriented shale oil well in the second member of Funing Formation, Qintong Sag, Subei Basin[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(2): 141-151.
[2] 肖阳, 王家豪, 李志刚, 等. 基于大数据的页岩油区块产量差异分析方法研究[J]. 钻采工艺, 2022, 45(3): 73-78.
  XIAO Yang, WANG Jiahao, LI Zhigang, et al. Study on production difference analysis method of shale oil play based on big data[J]. Drilling & Production Technology, 2022, 45(3): 73-78.
[3] 侯读杰, 张善文, 肖建新, 等. 济阳坳陷优质烃源岩特征与隐蔽油气藏的关系分析[J]. 地学前缘, 2008, 15(2): 137-146.
  HOU Dujie, ZHANG Shanwen, XIAO Jianxin, et al. The excellent source rocks and accumulation of stratigraphic and lithologic traps in the Jiyang depression, Bohai bay basin, China[J]. Earth Science Frontiers, 2008, 15(2): 137-146.
[4] 王晓明, 陈军斌, 任大忠. 陆相页岩油储层孔隙结构表征和渗流规律研究进展及展望[J]. 油气藏评价与开发, 2023, 13(1): 23-30.
  WANG Xiaoming, CHEN Junbin, REN Dazhong. Research progress and prospect of pore structure representation and seepage law of continental shale oil reservoir[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(1): 23-30.
[5] 张林晔. 陆相坳陷盆地“富集有机质”成烃作用再认识: 以东营凹陷为例[C]// 中国矿物岩石地球化学学会. 中国矿物岩石地球化学学会第九届学术年会论文摘要集. 宁波: 中国矿物岩石地球化学学会, 2003.
  ZHANG Linye. Re-understanding of hydrocarbon formation of “enrichment of organic matter” in continental depression basins: A case study of Dongying sag[C]// Chinese Society of Mineralogy, Petrology and Geochemistry. Abstract Collection of the 9th Annual Conference of the Chinese Society of Mineralogy, Petrology and Geochemistry. Ningbo: Chinese Society of Mineralogy, Petrology and Geochemistry, 2003.
[6] 卢双舫, 马延伶, 曹瑞成, 等. 优质烃源岩评价标准及其应用: 以海拉尔盆地乌尔逊凹陷为例[J]. 地球科学, 2012, 37(3): 535-544.
  LU Shuangfang, MA Yanling, CAO Ruicheng, et al. Evaluation criteria of high-quality source rocks and its applications: Taking the Wuerxun Sag in Hailaer Basin as an example[J]. Earth Science, 2012, 37(3): 535-544.
[7] 赵文智, 卞从胜, 李永新, 等. 陆相页岩油可动烃富集因素与古龙页岩油勘探潜力评价[J]. 石油勘探与开发, 2023, 50(3): 455-467.
  ZHAO Wenzhi, BIAN Congsheng, LI Yongxin, et al. Enrichment factors of movable hydrocarbons in lacustrine shale oil and exploration potential of shale oil in Gulong Sag, Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2023, 50(3): 455-467.
[8] 姚红生, 昝灵, 高玉巧, 等. 苏北盆地溱潼凹陷古近系阜宁组二段页岩油富集高产主控因素与勘探重大突破[J]. 石油实验地质, 2021, 43(5): 776-783.
  YAO Hongsheng, ZAN Ling, GAO Yuqiao, et al. Main controlling factors for the enrichment of shale oil and significant discovery in second member of Paleogene Funing Formation, Qintong Sag, Subei Basin[J]. Petroleum Geology & Experiment, 2021, 43(5): 776-783.
[9] 云露, 何希鹏, 花彩霞, 等. 苏北盆地溱潼凹陷古近系陆相页岩油成藏地质特征及资源潜力[J]. 石油学报, 2023, 44(1): 176-187.
  YUN Lu, HE Xipeng, HUA Caixia, et al. Accumulation characteristics and resource potential of Paleogene continental shale oil in Qintong sag of Subei Basin[J]. Acta Petrolei Sinica, 2023, 44(1): 176-187.
[10] 陆黄生, 杨永才, 刘军, 等. 苏北盆地溱潼凹陷断阶带油气藏的成藏期次[J]. 地质通报, 2008, 27(5): 633-640.
  LU Huangsheng, YANG Yongcai, LIU Jun, et al. Formation stages of petroleum accumulations in fault terrace belts of the Qintong subbasin, northern Jiangsu basin, China[J]. Geological Bulletin of China, 2008, 27(5): 633-640.
[11] 吴群, 余文端, 骆卫峰, 等. 苏北盆地溱潼凹陷岩性油藏勘探成果及启示[J]. 中国石油勘探, 2016, 21(3): 99-107.
  WU Qun, YU Wenrui, LUO Weifeng, et al. Achievements and recognitions of exploration in lithologic reservoirs in Qintong sag, North Jiangsu Basin[J]. China Petroleum Exploration, 2016, 21(3): 99-107.
[12] 昝灵, 骆卫峰, 印燕铃, 等. 苏北盆地溱潼凹陷古近系阜宁组二段页岩油形成条件及有利区评价[J]. 石油实验地质, 2021, 43(2): 233-241.
  ZAN Ling, LUO Weifeng, YIN Yanling, et al. Formation conditions of shale oil and favorable targets in the second member of Paleogene Funing Formation in Qintong Sag, Subei Basin[J]. Petroleum Geology & Experiment, 2021, 43(2): 233-241.
[13] 朱雷, 秦黎明, 张枝焕, 等. 苏北盆地溱潼凹陷北汉庄油田油气成藏地球化学特征[J]. 天然气地球科学, 2009, 20(1): 36-43.
  ZHU Lei, QIN Liming, ZHANG Zhihuan, et al. Geochemical characteristics and accumulation process of Beihanzhuang Oilfield of Qintong Depression, Northern Jiangsu Basin[J]. Natural Gas Geoscience, 2009, 20(1): 36-43.
[14] 马永生, 蔡勋育, 赵培荣, 等. 中国陆相页岩油地质特征与勘探实践[J]. 地质学报, 2022, 96(1): 155-171.
  MA Yongsheng, CAI Xunyu, ZHAO Peirong, et al. Geological characteristics and exploration practices of continental shale oil in China[J]. Acta Geologica Sinica, 2022, 96(1): 155-171.
[15] 鹿坤, 李长春, 周峰, 等. 东濮凹陷北部低有机质丰度烃源岩高效成藏机理[J]. 断块油气田, 2021, 28(4): 470-474.
  LU Kun, LI Changchun, ZHOU Feng, et al. Mechanism of high efficient reservoir formation of low abundance source rocks in the north of Dongpu Depression[J]. Fault-Block Oil & Gas Field, 2021, 28(4): 470-474.
[16] 李国欣, 张斌, 伍坤宇, 等. 柴达木盆地咸化湖盆低有机质丰度烃源岩高效生烃模式[J]. 石油勘探与开发, 2023, 50(5): 898-910.
  LI Guoxin, ZHANG Bin, WU Kunyu, et al. Low organic matter abundance and highly efficient hydrocarbon generation of saline source rock in the Qaidam Basin, NW China[J]. Petroleum Exploration and Development, 2023, 50(5): 898-910.
[17] 金强. 生油岩原始有机碳恢复方法的探讨[J]. 石油大学学报(自然科学版), 1989, 13(5): 1-10.
  JIN Qiang. The restoration of initial organic carbon in source rocks[J]. Journal of Xi'an Shiyou University(Natural Science Edition), 1989, 13(5): 1-10.
[18] 秦建中, 郑伦举, 腾格尔. 海相高演化烃源岩总有机碳恢复系数研究[J]. 地球科学, 2007, 32(6): 853-860.
  QIN Jianzhong, ZHENG Lunju, Tenger, et al. Study on the restitution coefficient of original total organic carbon for high mature marine hydrocarbon source rocks[J]. Earth Science, 2007, 32(6): 853-860.
[19] 庞雄奇, 李倩文, 陈践发, 等. 含油气盆地深部高过成熟烃源岩古TOC恢复方法及其应用[J]. 古地理学报, 2014, 16(6): 769-789.
  PANG Xiongqi, LI Qianwen, CHEN Jianfa, et al. Recovery method of original TOC and its application in source rocks at high mature-over mature stage in deep petroliferous basins[J]. Journal of Palaeogeography(Chinese Edition), 2014, 16(6): 769-789.
[20] 钟宁宁, 卢双舫, 黄志龙, 等. 烃源岩生烃演化过程TOC值的演变及其控制因素[J]. 中国科学(D辑: 地球科学), 2004, 34(增刊1): 120-126.
  ZHONG Ningning, LU Shuangfang, HUANG Zhilong, et al. The evolution of TOC value and its controlling factors during the hydrocarbon generation evolution process of source rocks[J]. Scientia Sinica(Series D: Terrae), 2004, 34(Suppl. 1): 120-126.
[21] 钟宁宁, 卢双舫, 黄志龙, 等. 烃源岩TOC值变化与其生排烃效率关系的探讨[J]. 沉积学报, 2004, 22(增刊1): 73-78.
  ZHONG Ningning, LU Shuangfang, HUANG Zhilong, et al. An approach to the evolution of TOC value for source rock and its relation to efficiencies of hydrocarbon generation and expulsion[J]. Acta Sedimentologica Sinica, 2004, 22(Suppl. 1): 73-78.
[22] 刘世丽, 段宏亮, 章亚, 等. 苏北盆地阜二段陆相页岩油气勘探潜力分析[J]. 海洋石油, 2014, 34(3): 27-33.
  LIU Shili, DUAN Hongliang, ZHANG Ya, et al. Analysis of oil and gas exploration potential in F2 member continental shale of Subei Basin[J]. Offshore Oil, 2014, 34(3): 27-33.
[23] 陆黄生, 秦黎明, 刘军, 等. 苏北盆地溱潼凹陷油气运聚模式[J]. 地质论评, 2009, 55(3): 395-405.
  LU Huangsheng, QIN Liming, LIU Jun, et al. Petroleum migration and accumulation in Qintong Sag, North Jiangsu Basin[J]. Geological Review, 2009, 55(3): 395-405.
[24] 昝灵, 骆卫峰, 马晓东. 苏北盆地溱潼凹陷阜二段烃源岩生烃潜力及形成环境[J]. 非常规油气, 2016, 3(3): 1-8.
  ZAN Ling, LUO Weifeng, MA Xiaodong, et al. Hydrocarbon generation potential and genetic environments of second member of Funing Formation in Qintong Sag, Subei Basin[J]. Petroleum Geology & Experiment, 2016, 3(3): 1-8.
[25] 昝灵, 柴方园, 印燕铃. 溱潼凹陷斜坡带原油物性和地化特征及成因[J]. 沉积学报, 2021, 39(5): 1068-1077.
  ZAN Ling, CAI Fangyuan, YIN Yanling, et al. Physical properties, geochemical characteristics and origins of crude oils in the Qintong Sag Slope[J]. Acta Sedimentologica Sinica, 2021, 39(5): 1068-1077.
[26] 吴克强, 姜雪, 孙和风. 近海富生油凹陷湖相烃源岩发育模式: 以黄河口凹陷古近系为例[J]. 地质科技情报, 2015, 34(2): 63-70.
  WU Keqiang, JIANG Xue, SUN Hefeng, et al. Model of lacustrine source rocks in offshore oil kitchen sags: A case study of Paleogene in Huanghekou Sag[J]. Bulletin of Geological Science and Technology, 2015, 34(2): 63-70.
[27] 张斌, 何媛媛, 陈琰, 等. 柴达木盆地西部咸化湖相优质烃源岩形成机理[J]. 石油学报, 2018, 39(6): 674-685.
  ZHANG Bin, HE Yuanyuan, CHEN Yan, et al. Formation mechanism of excellent saline lacustrine source rocks in western Qaidam Basin[J]. Acta Petrolei Sinica, 2018, 39(6): 674-685.
[28] 赵鹏, 彭光荣, 吴静, 等. 珠一坳陷小型洼陷文昌组烃源岩发育模式与主控因素[J]. 沉积学报, 2022, 40(4): 1109-1121.
  ZHAO Peng, PENG Guangrong, WU Jing, et al. Lacustrine source rock deposition model and main controlling factors of the Wenchang Formation in a small-scale sag, Zhui Depression, Pearl River Mouth Basin[J]. Acta Sedimentologica Sinica, 2022, 40(4): 1109-1121.
[29] 齐玉林, 张枝焕, 夏东领, 等. 鄂尔多斯盆地南部长7暗色泥岩与黑色页岩生烃动力学特征对比分析[J]. 现代地质, 2019, 33(4): 863-871.
  QI Yulin, ZHANG Zhihuan, XIA Dongling, et al. Comparative analysis of hydrocarbon generation kinetics of dark shale and black shale of Chang 7 in Southern Ordos Basin[J]. Geoscience, 2019, 33(4): 863-871.
[30] 钱门辉, 蒋启贵, 李志, 等. 开放体系下页岩生烃组分动力学研究: 以渤南洼陷为例[J]. 地球化学, 2017, 46(2): 149-157.
  QIAN Menhui, JIANG Qigui, LI Zhi, et al. A study on the compositional kinetics of shale hydrocarbon generation under an open system: Taking the Bonan sub-sag as an example[J]. Geochimica, 2017, 46(2): 149-157.
文章导航

/