油气藏评价与开发 >
2024 , Vol. 14 >Issue 5: 699 - 706
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2024.05.004
基于常规测井曲线的页岩岩相识别与应用——以苏北盆地溱潼凹陷阜宁组二段为例
收稿日期: 2023-08-29
网络出版日期: 2024-10-11
基金资助
国家自然科学基金面上项目“华南下寒武统、下志留统富硅质页岩成因模式比较研究”(41772148)
Identification and application of shale lithofacies based on conventional logging curves: A case study of the second member of Funing Formation in Qintong Sag, Subei Basin
Received date: 2023-08-29
Online published: 2024-10-11
页岩岩相的识别、划分在页岩油气勘探开发工作中具有重要的理论及实际意义。以苏北盆地溱潼凹陷古近系阜宁组二段页岩为研究对象,通过对典型钻井溱页1井岩心样品进行全岩/黏土X射线衍射分析,应用前人的页岩矿物组分“三端元”图解,得出该地区的页岩岩相类型。同时,利用一种基于原子搜索优化算法优化的BP(反向传播算法)神经网络方法对测井信息进行数据挖掘,以此建立黏土矿物、硅质矿物、碳酸盐岩矿物相对含量的预测模型,实现了通过自然能谱到页岩矿物含量的定量表征。最后应用该模型对溱页1井和沙垛1井阜宁组二段进行岩性预测及岩相识别,其识别结果与样品实测数据的岩相划分结果高度一致。研究为实现页岩岩相的间接识别提供了一个经济、快速、高效的方法,可通过测井曲线有效地预测页岩岩相组合体的主要矿物成分,为缺乏取心、实测样品井段的岩相识别提供依据。
王心乾 , 余文端 , 马晓东 , 周韬 , 邰浩 , 崔钦宇 , 邓空 , 陆永潮 , 刘占红 . 基于常规测井曲线的页岩岩相识别与应用——以苏北盆地溱潼凹陷阜宁组二段为例[J]. 油气藏评价与开发, 2024 , 14(5) : 699 -706 . DOI: 10.13809/j.cnki.cn32-1825/te.2024.05.004
The identification and classification of shale lithofacies are crucial for both theoretical understanding and practical applications in shale gas exploration and exploitation. This study focuses on the shale of the second member of the Paleogene Funing Formation in the Qintong Sag, Subei Basin, using core samples from a typical drilling well, Well-Qinye-1. The research involves whole rock/clay X-ray diffraction analysis on these core samples and employs a previously developed three-terminal diagram of shale mineral components to categorize the types present in this area. Additionally, a BP neural network method optimized by the ASO(Atom Search Optimization) algorithm was utilized to perform data mining on logging information. This process aimed to establish a prediction model for the relative content of clay minerals, siliceous minerals, and carbonate minerals, achieving quantitative characterization of shale mineral content through natural gamma ray spectrometry. Ultimately, the model was applied to predict lithology and identify lithofacies in the second member of Well-Qinye-1 and Well-Shaduo-1. The identification results closely aligned with the data measured from the samples, demonstrating high consistency. This study provides an economical, rapid, and efficient method for predicting shale lithofacies and main mineral components. It also offers a foundational approach for identifying well facies in scenarios where coring and direct testing data are unavailable.
[1] | 吴蓝宇, 胡东风, 陆永潮, 等. 四川盆地涪陵气田五峰组—龙马溪组页岩优势岩相[J]. 石油勘探与开发, 2016, 43(2): 189-197. |
WU Lanyu, HU Dongfeng, LU Yongchao, et al. Advantageous shale lithofacies of Wufeng Formation-Longmaxi Formation in Fuling gas field of Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2016, 43(2): 189-197. | |
[2] | 张晋言. 泥页岩岩相测井识别及评价方法[J]. 石油天然气学报, 2013, 35(4): 96-103. |
ZHANG Jinyan. Shale lithofacies logging identification and evaluation[J]. Journal of Oil and Gas Technology, 2013, 35(4): 96-103. | |
[3] | LOUCKS R G, RUPPER S C. Mississippian Barnett Shale: Lithofacies and depositional setting of a deep-water shale-gas succession of Fort Worth Basin, Texas[J]. AAPG Bulletin, 2007, 91(4): 579-601. |
[4] | 冉波, 刘树根, 孙玮, 等. 四川盆地及周缘下古生界五峰组-龙马溪组页岩岩相分类[J]. 地学前缘, 2016, 23(2): 96-107. |
RAN Bo, LIU Shugen, SUN Wei, et al. Lithofacies classification of shales of the Lower Paleozoic Wufeng-Longmaxi Formations in the Sichuan Basin and its surround areas, China[J]. Earth Science Frontiers, 2016, 23(2): 96-107. | |
[5] | TEICHERT C. Concepts of facies[J]. AAPG Bulletin, 1958, 42(11): 2718-2744. |
[6] | POTTER P E, MAYNARD J B, DEPETRIS P J. Mud and mudstones: Introduction and overview[M]. Berlin: Springer-Verlag, 2005. |
[7] | 邱嘉文. 四川盆地东缘五峰—龙马溪组页岩岩相特征研究[D]. 成都: 成都理工大学, 2015. |
QIU Jiawen. Shale lithofacies characteristics study of Wufeng-Longmaxi Formation in eastern marginal part of Sichuan Basin[D]. Chengdu: Chengdu University of Technology, 2015. | |
[8] | ABOUELRESH M O, SLATT R M. Lithofacies and sequence stratigraphy of the Barnett shale in east-central Fort Worth Basin, Texas[J]. AAPG Bulletin, 2012, 96(1): 1-22. |
[9] | 赵建华, 金之钧, 金振奎, 等. 四川盆地五峰组—龙马溪组页岩岩相类型与沉积环境[J]. 石油学报, 2016, 37(5): 572-586. |
ZHAO Jianhua, JIN Zhijun, JIN Zhenkui, et al. Lithofacies types and sedimentary environment of shale in Wufeng-Longmaxi Formation, Sichuan Basin[J]. Acta Petrolei Sinica, 2016, 37(5): 572-586. | |
[10] | 洪忠, 张猛刚, 苏明军. 应用地震波形分类技术识别岩相的适用性和局限性[J]. 物探与化探, 2013, 37(5): 904-910. |
HONG Zhong, ZHANG Menggang, SU Mingjun. The applicability and limitations of the seismic wave-form classification technology to the identification of lithological facies[J]. Geophysical and Geochemical Exploration, 2013, 37(5): 904-910. | |
[11] | 黄振华, 程礼军, 刘俊峰, 等. 微电阻率成像测井在识别页岩岩相与裂缝中的应用[J]. 煤田地质与勘探, 2015, 43(6): 121-123. |
HUANG Zhenhua, CHENG Lijun, LIU Junfeng, et al. Application of micro-resistivity image logging in identifying shale Facies and fractures[J]. Coal Geology & Exploration, 2015, 43(6): 121-123. | |
[12] | 石玉江, 肖亮, 毛志强, 等. 低渗透砂岩储层成岩相测井识别方法及其地质意义: 以鄂尔多斯盆地姬塬地区长8段储层为例[J]. 石油学报, 2011, 32(5): 820-828. |
SHI Yujiang, XIAO Liang, MAO Zhiqiang, et al. An identification method for diagenetic facies with well logs and its geological significance in low-permeability sandstones: A case study on Chang 8 reservoirs in the Jiyuan region, Ordos Basin[J]. Acta Petrolei Sinica, 2011, 32(5): 820-828. | |
[13] | GHOSH S, CHATTERJEE R, SHANKER P. Estimation of ash, moisture content and detection of coal lithofacies. from well logs using regression and artificial neural network modelling[J]. Fuel, 2016, 177: 279-287. |
[14] | 林万昌, 陈汶滨, 田继东. 自组织特征映射神经网络在岩性识别中的应用[J]. 西南石油学院学报, 1999, 21(3): 78-80. |
LIN Wanchang, CHEN Wenbin, TIAN Jidong. Application of self-organizing feature map neural network in lithological identification[J]. Journal of Southwest Petroleum University, 1999, 21(3): 78-80. | |
[15] | AMEUR-ZAIMECHE O, AZIEZ Z, HEDDAM S, et al. Lithofacies prediction in non-cored wells. from the Sif Fatima oil field(Berkine basin, southern Algeria): A comparative study of multilayer perceptron neural network and cluster analysis-based approaches[J]. Journal of African Earth Sciences, 2020, 166: 103826. |
[16] | 周正龙, 王贵文, 冉冶, 等. 致密油储集层岩性岩相测井识别方法: 以鄂尔多斯盆地合水地区三叠系延长组7段为例[J]. 石油勘探与开发, 2016, 43(1): 61-68. |
ZHOU Zhenglong, WANG Guiwen, RAN Zhi, et al. A logging identification method of tight oil reservoir lithology and lithofacies: A case from Chang7 Member of Triassic Yanchang Formation in Heshui area, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2016, 43(1): 61-68. | |
[17] | 芮晓庆, 周圆圆, 李志明, 等. 苏北盆地阜宁组源储特征及页岩油勘探方向探讨[J]. 海洋地质与第四纪地质, 2020, 40(6): 133-145. |
RUI Xiaoqing, ZHOU Yuanyuan, LI Zhiming, et al. Characteristics of source rocks and reservoirs of the Funing Formation in the Subei Basin and their bearing on future shale oil exploration[J]. Marine Geology & Quaternary Geology, 2020, 40(6): 133-145. | |
[18] | 云露, 何希鹏, 花彩霞, 等. 苏北盆地溱潼凹陷古近系陆相页岩油成藏地质特征及资源潜力[J]. 石油学报, 2023, 44(1): 176-187. |
YUN Lu, HE Xipeng, HUA Caixia, et al. Accumulation characteristics and resource potential of Paleogene continental shale oil in Qintong sag of Subei Basin[J]. Acta Petrolei Sinica, 2023, 44(1): 176-187. | |
[19] | 金之钧, 张谦, 朱如凯, 等. 中国陆相页岩油分类及其意义[J]. 石油与天然气地质, 2023, 44(4): 801-819. |
JIN Zhijun, ZHANG Qian, ZHU Rukai, et al. Classification of lacustrine shale oil reservoirs in China and its significance[J]. Oil & Gas Geology, 2023, 44(4): 801-819. |
/
〈 | 〉 |