油气藏评价与开发 >
2024 , Vol. 14 >Issue 5: 707 - 713
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2024.05.005
高邮凹陷花庄地区页岩油二维核磁测井评价应用
收稿日期: 2024-01-23
网络出版日期: 2024-10-11
基金资助
中国石化江苏油田科技攻关项目“内陆断陷湖盆断块型页岩油勘探开发关键技术”(P23189);中国石化江苏油田科技项目“高邮、金湖凹陷阜二段页岩油六性关系及储量评价研究”(JS23029)
Application of shale oil 2D NMR logging evaluation in Huazhuang area of Gaoyou Sag
Received date: 2024-01-23
Online published: 2024-10-11
苏北盆地高邮凹陷古近系阜宁组二段泥页岩具有孔隙结构复杂、层理发育、非均质性强的特点,应用常规测井系列难以准确评价孔隙及流体类型,二维核磁共振测井在流体识别方面具有独特优势。应用“盲源分离”信号处理技术进行数据聚类分析,通过花庄地区流体分区模型识别出地层中不同赋存状态的流体及含量。研究结果表明:二维核磁测井提高了储层流体评价精度,提供较为可靠的总孔隙度、有效孔隙度、含油饱和度、可动油含量等参数,通过与岩心实验分析对比,有效孔隙度平均绝对误差为0.4%,含油饱和度平均绝对误差为7.3%。通过阜宁组二段泥页岩主要岩性中流体性质分析,表明长英质灰云质混积页岩在物性、含油性、可动性方面最优,是页岩油优质“甜点”层。花庄地区应用二维核磁测井能够有效地解决页岩油孔隙度、饱和度评价的难题,也能为页岩油“甜点”优选、储层产能预测提供参考。
张菲 , 李秋政 , 蒋阿明 , 邓辞 . 高邮凹陷花庄地区页岩油二维核磁测井评价应用[J]. 油气藏评价与开发, 2024 , 14(5) : 707 -713 . DOI: 10.13809/j.cnki.cn32-1825/te.2024.05.005
The mud shales of the second member of the Paleogene Funing Formation in the Gaoyou Sag of Subei Basin are distinguished by their complex pore structures, well-developed bedding, and pronounced heterogeneity. These characteristics complicate the accurate evaluation of pore and fluid types using conventional well logging techniques. However, two-dimensional nuclear magnetic resonance(2D NMR) logging presents distinct advantages in fluid identification. The study incorporates the “Blind Source Separation” signal processing technique to perform data clustering analysis. Subsequently, a fluid zone model is applied to determine the fluid content with different movable properties in the reservoir space of the Huazhuang area. The findings demonstrate that 2D NMR logging significantly improves the accuracy of reservoir fluid evaluation, yielding reliable estimates of total porosity, effective porosity, oil saturation, and movable oil volume content. When compared to core analysis, the average absolute errors for effective porosity and oil saturation are minimal, at 0.4% and 7.3%, respectively. Further analysis of fluid properties within the primary lithologies of the second member of the Funing Formation reveals that the felsic-calcitic-dolomitic-mixed shales possess superior physical properties, oil volume content, and mobility. These characteristics render them as prime targets for shale oil exploration in the region. The successful application of 2D NMR logging in the Huazhuang area not only addresses the challenges associated with evaluating shale oil porosity and saturation but also provides essential insights for selecting “sweet spot” districts and forecasting reservoir production.
Key words: Subei Basin; Gaoyou Sag; 2D NMR logging; shale oil; fluid identification
[1] | 朱相羽, 段宏亮, 孙雅雄. 苏北盆地高邮凹陷古近系陆相页岩油勘探突破及意义[J]. 石油学报, 2023, 44(8): 1206-1221. |
ZHU Xiangyu, DUAN Hongliang, SUN Yaxiong. Breakthrough and significance of Paleogene continental shale oil exploration in Gaoyou sag, Subei Basin[J]. Acta Petrolei Sinica. 2023, 44(8): 1206-1221. | |
[2] | 赵政璋, 杜金虎. 致密油气[M]. 北京: 石油工业出版社, 2012: 100-128. |
ZHAO Zhengzhang, DU Jinhu. Tight oil & gas[M]. Beijing: Petroleum Industry Press, 2012: 100-128. | |
[3] | 蒋云箭, 刘惠民, 柴春艳, 等. 济阳坳陷页岩油测井评价[J]. 油气地质与采收率, 2023, 30(1): 21-34. |
JIANG YunJian, LIU Huimin, CHAI Chunyan, et al. Logging evaluation of shale oil in Jiyang Depression[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(1): 21-34. | |
[4] | 李小龙, 孙伟. 页岩油储层“七性”关系评价研究: 以苏北盆地溱潼凹陷阜宁组二段为例[J]. 非常规油气, 2022, 9(6): 34-41. |
LI Xiaolong, SUN Wei. Research on seven properties relationshipevaluation of shale oil reservoir: A case study of the second member of Funing Formation in Qintong Sag of Subei Basin[J]. Unconventional Oil& Gas, 2022, 9(6): 34-41. | |
[5] | 付茜, 刘启东, 刘世丽, 等. 苏北盆地高邮凹陷古近系阜宁组二段页岩油成藏条件分析[J]. 石油实验地质, 2020, 42(4): 625-631. |
FU Qian, LIU Qidong, LIU Shili, et al. Shale oil accumulation conditions in the second member of Paleogene Funing Formation, Gaoyou Sag, Subei Basin[J]. Petroleum Geology & Experiment, 2020, 42(4): 625-631. | |
[6] | 段宏亮, 刘世丽, 付茜. 苏北盆地古近系阜宁组二段富有机质页岩特征与沉积环境[J]. 石油实验地质, 2020, 42(4): 612-617. |
DUAN Hongliang, LIU Shili, FU Qian. Characteristics and sedimentary environment of organic-rich shale in the second member of Paleogene Funing Formation, Subei Basin[J]. Petroleum Geology & Experiment, 2020, 42(4): 612-617. | |
[7] | 程海生, 刘世丽, 段宏亮. 苏北盆地阜宁组泥页岩储层特征[J]. 复杂油气藏, 2015, 8(3): 10-16. |
CHENG Haisheng, LIU Shili, DUAN Hongliang. Shale reservoir characteristics of Funing Formation in Subei Basin[J]. Complex Hydrocarbon Reservoirs, 2015, 8(3): 10-16. | |
[8] | 佘刚, 徐永发, 李世毅, 等. 二维核磁共振测井在柴达木盆地复杂储层流体识别中的应用[J]. 地球物理学进展, 2018, 33(4): 1566-1572. |
SHE Gang, XU Yongfa, LI Shiyi, et al. Application of 2D NMR logging on complex reservoir fluid identification in Qaidam basin[J]. Progress in Geophysics, 2018, 33(4): 1566-1572. | |
[9] | 石玉江, 刘天定. 二维核磁共振测井技术在长庆油田的应用[J]. 测井技术, 2009, 33(6): 584-588. |
SHI Yujiang, LIU Tianding. Application of 2D NMR Logging in Changqing Oilfield[J]. Well Logging Technology, 2009, 33(6): 584-588. | |
[10] | 闫建平, 温丹妮, 李尊芝, 等. 基于核磁共振测井的低渗透砂岩孔隙结构定量评价方法: 以东营凹陷南斜坡沙四段为例[J]. 地球物理学报, 2016, 59(4): 1543-1552. |
YAN Jianping, WEN Danni, LI Zunzhi, et al. The quantitative evaluation method of low permeable sandstone pore structure based on nuclear magnetic resonance(NMR) logging[J]. Chinese Journal of Geophysics, 2016, 59(4): 1543-1552. | |
[11] | 刘雅慧, 王才志, 刘忠华, 等. 一种评价页岩油含油性的测井方法: 以准噶尔盆地吉木萨尔凹陷为例[J]. 天然气地球科学, 2021, 32(7): 1084-1091. |
LIU Yahui, WANG Caizhi, LIU Zhonghua, et al. A logging method for evaluating oil-bearing property of Jimsar shale oil: Case study of Sag in Junggar Basin[J]. Natural Gas Geoscience, 2021, 32(7): 1084-1091. | |
[12] | 宁从前, 周明顺, 成捷, 等. 二维核磁共振测井在砂砾岩储层流体识别中的应用[J]. 岩性油气藏, 2021, 33(1): 267-274. |
NING Congqian, ZHOU MingShun, CHENG Jie, et al. Application of 2D NMR logging in fluid identification of glutenite reservoir[J]. Lithologic Reservoirs, 2021, 33(1): 267-274. | |
[13] | 王志战, 李新, 魏杨旭, 等. 页岩油气层核磁共振评价技术综述[J]. 波谱学杂志, 2015, 32(4): 688-698. |
WANG Zhizhan, LI Xin, WEI Yangxu, et al. NMR technologies for evaluating oil & gas shale: A review[J]. Chinese Journal of Magnetic Resonance, 2015, 32(4): 688-698. | |
[14] | 谢然红, 肖立志, 邓克俊, 等. 二维核磁共振测井[J]. 测井技术, 2005, 29(5): 430-434. |
XIE Ranhong, XIAO Lizhi, DENG Kejun, et al. Two-dimensional NMR Logging[J]. Well Logging Technology, 2005, 29(5): 430-434. | |
[15] | 崔海标, 陆凡, 李鑫, 等. D-T2二维核磁共振测井技术发展现状综述[J]. 石油化工应用, 2016, 35(3): 1-5. |
CUI Haibiao, LU Fan, LI Xin, et al. Review on the development of D-T2 two-dimensional nuclear magnetic resonance logging[J]. Petrochemical Industry Application, 2016, 35(3): 1-5. | |
[16] | 王志战. 页岩油储层D—T2核磁共振测井解释方法[J]. 天然气地球科学, 2020, 31(8): 1178-1184. |
WANG Zhizhan. Discuss on D-T2 NMR interpretation of oil shale[J]. Natural Gas Geoscience, 2020, 31(8): 1178-1184. | |
[17] | 韩闯, 李纲, 别康, 等. 二维核磁共振T1—T2谱在风西复杂碳酸盐岩储层流体识别中的应用[J]. 测井技术, 2021, 45(1): 56-61. |
HAN Chuang, LI Gang, BIE Kang, et al. Application of innovative T1-T2 fluid typing method in complex carbonate reservoir of Fengxi Block[J]. Well Logging Technology. 2021, 45(1): 56-61. | |
[18] | 毕林锐. 核磁共振测井技术的最新若干进展[J]. 工程地球物理学报, 2007, 4(4): 369-374. |
BI Linrui. Latest advances in NMR logging technology[J]. Chinese Journal of Engineering Geophysics, 2007, 4(4): 369-374. | |
[19] | 张彦. MRIL-P核磁共振成像测井技术及其应用[J]. 石油仪器, 2009, 23(2): 22-24. |
ZHANG Yan. Magnetic resonance image logging and its application[J]. Petroleum Instruments, 2009, 23(2): 22-24. | |
[20] | 王雷, 周军, 雷晓阳, 等. MRT二维核磁共振测井方法及应用[J]. 测井技术, 2021, 45(4): 399-404. |
WANG Lei, ZHOU Jun, LEI Xiaoyang, et al. Method and application of MRT two dimensional NMR logging[J]. Well Logging Technology, 2021, 45(4): 399-404. | |
[21] | 李仙枝, 宋公仆, 张向林, 等. EMRT核磁共振测井仪机器应用[J]. 石油仪器, 2014, 28(3): 42-44. |
LI Xianzhi, SONG Gongpu, ZHANG Xianglin, et al. EMRT magnetic resonance logging tools and its appliction[J]. Petroleum Instruments, 2014, 28(3): 42-44. | |
[22] | 闫伟林, 张兆谦, 陈龙川, 等. 基于核磁共振技术的古龙页岩含油饱和度评价新方法[J]. 大庆石油地质与开发, 2021, 40(5): 78-86. |
YAN Weilin, ZHANG Zhaoqian, CHEN Longchuan, et al. New evaluating method of oil saturation in Gulong shale based on NMR technique[J]. Petroleum Geology & Oilfield Development in Daqing, 2021, 40(5): 78-86. |
/
〈 | 〉 |