油气勘探

砂岩夹层储层分级评价及展布特征——以松辽盆地长岭凹陷大情字井地区青山口组一段为例

  • 肖佃师 ,
  • 郭雪燚 ,
  • 王猛 ,
  • 邢济麟 ,
  • 王民 ,
  • 汪睿 ,
  • 郑乐华 ,
  • 关小蝶
展开
  • 1.中国石油大学(华东)地球科学与技术学院,山东 青岛 266580
    2.中国石油吉林油田公司勘探开发研究院,吉林 松原 138000
肖佃师(1981—),男,博士,副教授,博士生导师,主要从事非常规油气储层岩石物理评价方面的研究。地址:山东省青岛市黄岛区长江西路66号,邮政编码:266580。E-mail: xiaods@upc.edu.cn

收稿日期: 2024-01-30

  网络出版日期: 2024-10-11

基金资助

国家自然科学基金“压裂液在原位页岩气层中渗吸、滞留机理及影响”(41972139);国家自然科学基金优青项目“非常规油气地质评价”(41922015)

Classification evaluation and distribution characteristics of sandstone interlayer reservoirs: A case study of the first member of Qingshankou Formation in Daqingzijing area, Changling Sag, Songliao Basin

  • XIAO Dianshi ,
  • GUO Xueyi ,
  • WANG Meng ,
  • XING Jilin ,
  • WANG Min ,
  • WANG Rui ,
  • ZHENG Lehua ,
  • GUAN Xiaodie
Expand
  • 1. School of Geoscience, China University of Petroleum(East China), Qingdao, Shandong 266580, China
    2. Research Institute of Exploration and Development, PetroChina Jilin Oilfield Company, Songyuan, Jilin 138000, China

Received date: 2024-01-30

  Online published: 2024-10-11

摘要

松辽盆地南部青山口组一段夹层型页岩油具有良好的勘探潜力,其夹层品质对含油性及产能影响大。然而,夹层物性呈现较强的非均质性,急需对夹层储层进行表征与描述,建立一套适合夹层储层的分级方案。通过场发射扫描电镜、高压压汞、核磁共振等实验对储层进行表征,基于压汞分形理论,建立适用于砂岩夹层的储层物性分级标准,结合测井资料对储层物性参数进行预测,进而刻画夹层优质储层平面展布。研究表明:根据源岩成熟度的差异,松辽盆地南部大情字井青一段可分为低熟区(Ro<1.0%,Ro为镜质体反射率)和中高熟源岩区(Ro>1.0%),夹层物性随烃源岩成熟度增大而变差。根据储层物性差异特征,分区块建立了夹层物性分级标准,将砂岩夹层分为Ⅰ—Ⅲ类和无效储层;由Ⅰ类储层到无效储层的大孔含量和中孔含量依次变少,储集空间由粒间孔、粒间溶蚀孔过渡至粒内溶蚀孔和晶间孔;压汞形态由弱平台型、缓直线型过渡至上凸状,储层含油性逐渐变差。优质夹层“甜点”主要沿着河口坝主体、水下分流河道等沉积微相分布,厚度自西南向东北方向减薄。研究成果为该区青山口组一段夹层型页岩油“甜点”优选提供重要支撑。

本文引用格式

肖佃师 , 郭雪燚 , 王猛 , 邢济麟 , 王民 , 汪睿 , 郑乐华 , 关小蝶 . 砂岩夹层储层分级评价及展布特征——以松辽盆地长岭凹陷大情字井地区青山口组一段为例[J]. 油气藏评价与开发, 2024 , 14(5) : 714 -726 . DOI: 10.13809/j.cnki.cn32-1825/te.2024.05.006

Abstract

The intercalated shale oil within the first member of the Qingshankou Formation in the southern Songliao Basin exhibits significant exploration potential, primarily influenced by the quality of its intercalations, which impacts both oil content and productivity. The physical properties of these interlayers are notably heterogeneous, highlighting the necessity to characterize and describe interlayer reservoirs comprehensively and establish a suitable classification scheme. This study utilized advanced techniques such as field emission scanning electron microscopy, high-pressure mercury injection, and nuclear magnetic resonance to characterize the reservoir. Employing the fractal theory associated with mercury injection, a physical property classification standard tailored for sandstone interlayers was developed. This standard was combined with logging data to predict the physical property parameters of the reservoirs, facilitating the identification and mapping of high-quality interlayer reservoirs. The results delineate the first member of the Qingshankou Formation in the Daqingzijing area into regions of varying source rock maturity: low maturity areas with a vitrinite reflectance(Ro) of less than 1.0% and areas with middle to high maturity source rocks(Ro greater than 1.0%). It was found that interlayer physical properties deteriorate as the maturity of the source rock increases. A grading standard for interlayer physical properties was established, categorizing the sandstone interlayers into Class Ⅰ to Ⅲ, and deeming some as invalid reservoirs. From Class Ⅰ to invalid reservoirs, there is a sequential decrease in the content of large and medium pores, with reservoir space transitioning from intergranular pores and intergranular solution pores to intragranular solution pores and intergranular pores. The mercury injection profiles evolve from weak platforms and slow straight lines to convex shapes, indicating a gradual degradation in oil content. High-quality interlayer reservoirs are predominantly situated along the main body of the estuary bar and the underwater distributary channels, with the thickness decreasing from southwest to northeast. The findings of this research provide crucial insights for targeting interbedded shale oil prospects within the first member of the Qingshankou Formation in the southern Songliao Basin, assisting in the strategic selection of exploration and development sites.

参考文献

[1] 金之钧, 张谦, 朱如凯, 等. 中国陆相页岩油分类及其意义[J]. 石油与天然气地质, 2023, 44(4): 801-819.
  JIN Zhijun, ZHANG Qian, ZHU Rukai, et al. Classification of lacustrine shale oil reservoirs in China and its significance[J]. Oil & Gas Geology, 2023, 44(4): 801-819.
[2] 边瑞康, 武晓玲, 包书景, 等. 美国页岩油分布规律及成藏特点[J]. 西安石油大学学报(自然科学版), 2014, 29(1): 1-11.
  BIAN Ruikang, WU Xiaoling, BAO Shujing, et al. Distribution and reservoir-forming characteristics of shale oil in the United States[J]. Journal of Xi'an Shiyou University(Natural Science Edition), 2014, 29(1): 1-11.
[3] 黎茂稳, 马晓潇, 蒋启贵, 等. 北美海相页岩油形成条件、富集特征与启示[J]. 油气地质与采收率, 2019, 26(1): 13-28.
  LI Maowen, MA Xiaoxiao, JIANG Qigui, et al. Enlightenment from formation conditions and enrichment characteristics of marine shale oil in North America[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(1): 13-28.
[4] 刘显阳. 鄂尔多斯盆地延长组致密油成藏特征及勘探潜力分析[D]. 成都: 成都理工大学, 2017.
  LIU Xianyang. The characteristics and analysis of exploration potential of tight oil reservoir of Yanchang Formation, Ordos Basin[D]. Chengdu: Chengdu University of Technology, 2017.
[5] 朱德顺, 王勇, 朱德燕, 等. 渤南洼陷沙一段夹层型页岩油界定标准及富集主控因素[J]. 油气地质与采收率, 2015, 22(5): 15-20.
  ZHU Deshun, WANG Yong, ZHU Deyan, et al. Analysis on recognition criteria and enrichment factors of interlayer shale oil of in Bonan subsag[J]. Petroleum Geology and Recovery Efficiency, 2015, 22(5): 15-20.
[6] 刘雅利, 刘鹏. 陆相富有机质泥页岩中夹层特征及其作用: 以济阳坳陷为例[J]. 油气地质与采收率, 2019, 26(5): 1-9.
  LIU Yali, LIU Peng. Interlayer characteristics and their effect on continental facies organic-rich shale: A case study of Jiyang Depression[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(5): 1-9.
[7] YANG L, XING J L, XUE W, et al. Characteristics and key controlling factors of the interbedded-type shale-oil sweet spots of Qingshankou Formation in Changling Depression[J]. Energies, 2023, 16(17): 1-20.
[8] CAO Z, LIU G D, KONG Y H, et al. Lacustrine tight oil accumulation characteristics: Permian Lucaogou Formation in Jimusaer Sag, Junggar Basin[J]. International Journal of Coal Geology, 2016, 153: 37-51.
[9] 聂海宽, 张培先, 边瑞康, 等. 中国陆相页岩油富集特征[J]. 地学前缘, 2016, 23(2): 55-62.
  NIE Haikuan, ZHANG Peixian, BIAN Ruikang, et al. Oil accumulation characteristics of China continental shale[J]. Earth Science Frontiers, 2016, 23(2): 55-62.
[10] 庞正炼, 陶士振, 张琴, 等. 鄂尔多斯盆地延长组7段夹层型页岩层系石油富集规律与主控因素[J]. 地学前缘, 2023, 30(4): 152-163.
  PANG Zhenglian, TAO Shizhen, ZHANG Qin, et al. Interbedded shale formation of the 7th member of the Yanchang Formation in the Ordos Basin:Petroleum accumulation patterns and controlling factors[J]. Earth Science Frontiers, 2023, 30(4): 152-163.
[11] 付金华, 李士祥, 牛小兵, 等. 鄂尔多斯盆地三叠系长7段页岩油地质特征与勘探实践[J]. 石油勘探与开发, 2020, 47(5): 870-883.
  FU Jinhua, LI Shixiang, NIU Xiaobing, et al. Geological characteristics and exploration of shale oil in Chang 7 Member of Triassic Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(5): 870-883.
[12] 于利民. 松辽盆地大情字井地区青山口组一段夹层型页岩油甜点综合评价[D]. 大庆: 东北石油大学, 2023.
  YU Limin. Comprehensive evaluation of sweet spots in interlayer shale oil of the first member of Qingshankou Formation in Daqingzijing area of the Songliao Basin[D]. Daqing: Northeast Petroleum University, 2023.
[13] 肖玲, 陈曦, 雷宁, 等. 鄂尔多斯盆地合水地区三叠系长7段页岩油储层特征及主控因素[J]. 岩性油气藏, 2023, 35(2): 80-93.
  XIAO Ling, CHEN Xi, LEI Ning, et al. Characteristics and main controlling factors of shale oil reservoirs of Triassic Chang 7 member in Heshui area,Ordos Basin[J]. Lithologic Reservoirs, 2023, 35(2): 80-93.
[14] 冯顺. 浅水三角洲前缘储层隔夹层研究[D]. 成都: 西南石油大学, 2018.
  FENG Shun. Shallow water delta front reservoir interlayer insulation research[D]. Chengdu: Southwest Petroleum University, 2018.
[15] 陈薪凯, 刘景彦, 林晓海, 等. 三角洲外前缘薄层特低渗储层构型特征: 以大情字井油田黑60区块青山口组为例[J]. 东北石油大学学报, 2019, 43(3): 78-89.
  CHEN Xinkai, LIU Jingyan, LIN Xiaohai, et al. Architecture analysis of extra-low permeability thin sandstone reservoir in delta outer-front: Taking Qingshankou Formation H60 oil block in Daqingzijing Oilfield as an example[J]. Journal of Northeast Petroleum University, 2019, 43(3): 78-89.
[16] 陈犁. 致密油储层类型划分方法研究[D]. 西安: 西安石油大学, 2017.
  CHEN Li. Study on division method of tight reservoir[D]. Xi'an: Xi'an Shiyou University, 2017.
[17] 张大伟, 陈发景, 程刚. 松辽盆地大情字井地区高台子油层储集层孔隙结构的微观特征[J]. 石油与天然气地质, 2006, 27(5): 668-674.
  ZHANG Dawei, CHEN Fajing, CHENG Gang. The microscopic features of pore structure in Gaotaizi oil layer of Daqingzijing area[J]. Oil & Gas Geology, 2006, 27(5): 668-674.
[18] FENG Z Q, JIA C Z, XIE X N. Tectonostratigraphic units and stratigraphic sequences of the nonmarine Songliao basin[J]. Basin Research, 2010, 22(1): 79-95.
[19] 曹晓萌. 松辽盆地晚白垩世青山口组页岩孔隙特征及其演化规律[D]. 北京: 中国地质大学, 2020.
  CAO Xiaomeng. Pore characteristics and its evolution law of the late Cretaceous Qingshankou Formation in shale in the Songliao Basin[D]. Beijing: China University of Geoscience, 2020.
[20] 刘之的, 张伟杰, 孙家兴, 等. 大情字井油田青一段特低渗透储层物性主控因素[J]. 西安科技大学学报, 2018, 38(1): 99-107.
  LIU Zhidi, ZHANG Weijie, SUN Jiaxing, et al. Factors influencing the physical properties of reservoir in the Qing 1 section of Daqingzijing Oilfield[J]. Journal of Xi'an University of Science and Technology, 2018, 38(1): 99-107.
[21] 杜金虎, 胡素云, 庞正炼, 等. 中国陆相页岩油类型、潜力及前景[J]. 中国石油勘探, 2019, 24(5): 560-568.
  DU Jinhu, HU Suyun, PANG Zhenglian, et al. The types, potentials and prospects of continental shale oil in China[J]. China Petroleum Exploration, 2019, 24(5): 560-568.
[22] 赵文智, 胡素云, 侯连华, 等. 中国陆相页岩油类型、资源潜力及与致密油的边界[J]. 石油勘探与开发, 2020, 47(1): 1-10.
  ZHAO Wenzhi, HU Suyun, HOU Lianhua, et al. Types and resource potential of continental shale oil in China and its boundary with tight oil[J]. Petroleum Exploration and Development, 2020, 47(1): 1-10.
[23] 赵文智, 胡素云, 朱如凯, 等. 陆相页岩油形成与分布[M]. 北京: 石油工业出版社, 2022.
  ZHAO Wenzhi, HU Suyun, ZHU Rukai, et al. Formation and distribution of nonmarine shale oil in China[M]. Beijing: Petroleum Industry Press, 2022.
[24] 孔星星, 肖佃师, 蒋恕, 等. 联合高压压汞和核磁共振分类评价致密砂岩储层:以鄂尔多斯盆地临兴区块为例[J]. 天然气工业, 2020, 40(3): 38-47.
  KONG Xingxing, XIAO Dianshi, JIANG Shu, et al. Application of the combination of high-pressure mercury injection and nuclear magnetic resonance to the classification and evaluation of tight sandstone reservoirs: A case study of the Linxing Block in the Ordos Basin[J]. Natural Gas Industry, 2020, 40(3): 38-47.
[25] 宋新飞, 李忠诚, 郭先涛, 等. 松辽盆地南部德惠断陷合隆: 兰家反转带泉一段致密气储层特征及分级评价[J]. 天然气地球学, 2020, 31(3): 375-384.
  SONG Xinfei, LI Zhongcheng, GUO Xiantao, et al. Characteristics and classification evaluation of tight gas reservoirs in the 1st member of Quantou Formation of Helong-Lanjia inversion zone in Dehui Fault Depression[J]. Natural Gas Geoscience, 2020, 31(3): 375-384.
[26] WASHBURN E. The dynamics of capillary flow[J]. Physical Review, 1921, 17(3): 273-283.
[27] LI J Q, LIU D M, YAO Y B, et al. Physical characterization of the pore-fracture system in coals, Northeastern China[J]. Energy Exploration & Exploitation, 2013, 31(2): 267-286.
[28] 郭春华, 周文, 林璠, 等. 页岩气储层毛管压力曲线分形特征[J]. 成都理工大学学报(自然科学版), 2014, 41(6): 773-777.
  GUO Chunhua, ZHAO Wen, LIN Fan, et al. Fractal characteristics of capillary pressure curve in shale gas reservoir[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2014, 41(6): 773-777.
[29] 卢双舫, 李俊乾, 张鹏飞, 等. 页岩油储集层微观孔喉分类与分级评价[J]. 石油勘探与开发, 2018, 45(3): 436-444.
  LU Shuangfang, LI Junqian, ZHANG Pengfei, et al. Classification of microscopic pore-throats and the grading evaluation on shale oil reservoirs[J]. Petroleum Exploration and Development, 2018, 45(3): 436-444.
[30] LI P, ZHENG M, BI H, et al. Pore throat structure and fractal characteristics of tight oil sandstone: A case study in the Ordos Basin, China[J]. Journal of Petroleum Science and Engineering, 2017, 149: 665-674.
[31] 宋宁, 刘振, 张剑风, 等. 基于流动单元分类的非均质砂岩储集层渗透率预测[J]. 科技导报, 2013, 31(2): 68-71.
  SONG Ning, LIU Zhen, ZHANG Jianfeng, et al. Permeability prediction of heterogeneous sand reservoir based on flow units classification[J]. Science and Technology Review, 2013, 31(2): 68-71.
[32] 董春梅, 林承焰, 赵海朋, 等. 基于流动单元的测井储层参数解释模型[J]. 测井技术, 2006, 30(5): 425-428.
  DONG Chunmei, LIN Chengyan, ZHAO Haipeng, et al. Model of well logging reservoir parameters interpretation based on flow units[J]. Well Logging Technology, 2006, 30(5): 425-428.
文章导航

/